

NuLAB wet chemistry nutrient analyser

Verena Dauben¹, Kristine Carstens², Alexander Davidov¹, Oliver Zenk¹ & Vincent Kelly³

¹ MBT GmbH, Kiel ² Biological Institute Helgoland ³ Green Eyes Environmental LLC, MD, USA

MBT - Meerestechnisches Büro Turla GmbH, Kiel

www.m-b-t.com

Key facts:

- located in Kiel
- part of the MacArtney Group with over 400 employees and offices or partner on all continents
 MBT currently 19 employees with offices in Kiel and Bremen
- 5 oceanographers, 5 engineers, 1 software engineer, 4 electrical and mechanical technicians

What we do:

- Sales and engineering solutions in marine technology including
 - Underwater cables and connectors
 - Scientific winches
 - Oceanographic and hydrographic sensors and systems
- Providing complete customized solutions design, manufacturing, installation, training and service
- Service, maintenance & calibration of oceanographic & hydrographic sensors

Co-operation with Green Eyes Environmental LLC:

- Since 2001 co-operation, service and support for former EnviroTech and later Green Eyes nutrient analysers
- Since 2016 sales representation of Green Eyes products in Europe
- 2017 setting up of facilities at MBT GmbH to test and service Green Eyes nutrient analysers and prepare reagents
- Nutrient analyser training, installations and workshops

Green Eyes Environmental LLC:

- Based in Easton, Maryland, United States
- Founded in 2006 by Vincent Kelly, Chemical Oceanographer
- 2014 taking over former EnviroTech EcoLAB and AutoLAB product lines for continuous *in situ* nutrient monitoring
- Further development into state of the art analysers

What NuLAB stands for:

Wet Chemical Analysers for Nitrate, Phosphate, Ammonia and Silicate

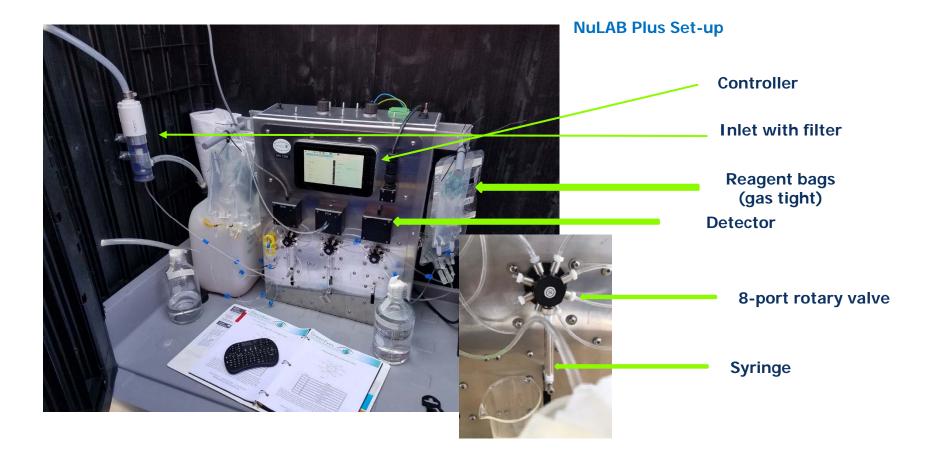
What NuLAB does:

- Application of established wet chemical methods to a field chemical analyser
- Precise volumes of sample
- On-Board-Standards (OBS)
- Reagents connected to a rotary valve and mixed by a syringe pump
- Analysed in high precision colorimeters.

Two NuLAB versions for various applications (third submersible in development)

Basic NuLAB

• smaller size (1-2 channels)



NuLAB Plus

- Included touch screen controller, relays for pump and water2web data posting
- Up to 3 channels

٠

Manual Mode

Valve:Syringe:Pump:Detector Macros	Run Time	30 v seconds
Data	Run Pump	
NuLAB Channel	Detector	
Channel Ammonii	Take detector reading	
Valve	Get config/Comms Check	
Port number Align •	Close	
Move valve	Stop program	
Svringe	Send	

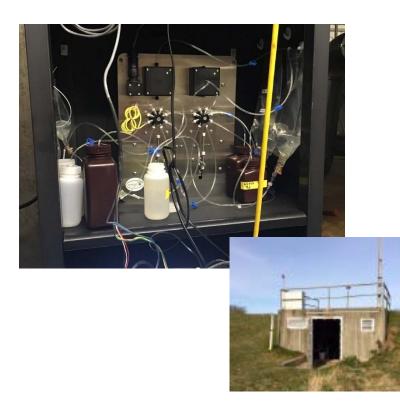
Logging Mode

		-					her secular		•
Collibration Parameters			Pump Run Time	180	seconds		Samples per On-Board Std.	1 .	
Alerts and File Transfer	Lagging Cycle								
			inlet Flushes per Sample	1 •			Inlet Backflush	2	
Channels to Run							Analysis Cycle	60	minutes
			Samples per On-Board Std.	1 •			interval		
N+N	(e)		inlet Backflush				Start Hour	09	HH
Nitrite	2		INIET BACKTUSIN	Ø					
Phosphate	۲		Analysis Cycle Interval	60	minutes		End Date	09/06/2016	MM/DD/YYYY
Ammonium	R		Start Hour	09	нн		End Hour	10	HH
Logging Sequence	i i		End Date	09/06/2016	MM/DD/YYYY		Start Logging	e	
Pump Run Time	seconds	-	End Hour	10	нн	÷	Send		

NuLAB Software

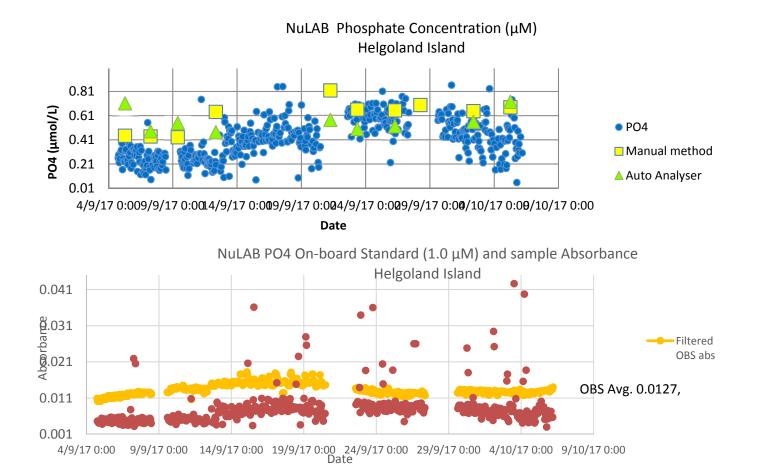
- NuLAB is operated via a software running on the controller
- Software includes two different modes ("Manual" & "Logging")
- Analyses are executed by macros
- Macros can be selected via the software interface
- Individual channels can be selected
 - Deployment mode is defined

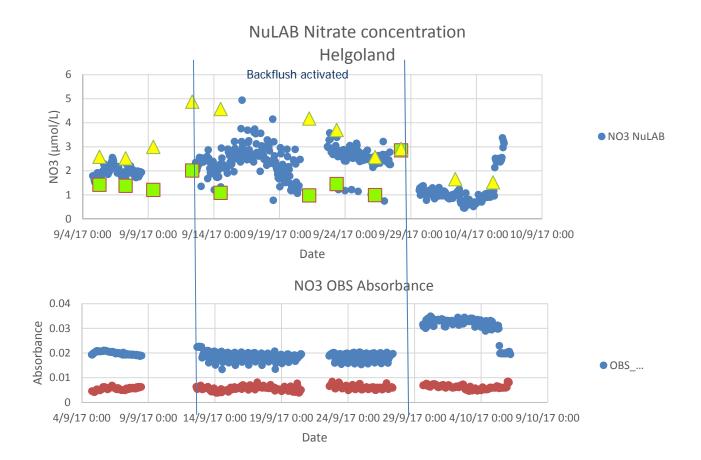
Basic methodology of NuLAB


- The NuLAB adapts established wet chemical methods to a field chemical analyser.
- Data is calibrated via an On-Board-Standard (OBS) that precedes one or more samples.
- Operates with 8 pre-defined macros that determine how analyses are carried out
- NuLAB macros follow the protocols of the United States Environmental Protection Agency for nutrient analysis
- Macros can be customized to specific requirements and to third party analysis protocols

Strenghts of NuLAB

- NuLAB determines a reagent blank before each sample
- An OBS can be measured before each sample and NuLAB uses the most recent OBS for concentration calculation
- NuLAB macros are customizable
- NuLAB is easy to operate and easy to integrate into other systems (e.g. Ferry Box)
- Data can be transmitted via internet to web gateways (like MetOcean Gateway)




NuLAB installation at Helgoland

- Installation of a 2-channel NuLAB system (Nitrate & Phosphate) next to Ferry Box based at "Helgoland Einlaufbollwerk"
- Continuous test measurements since mid-July 2017
- Hourly samples of NO₃+NO₂ and PO₄ from Ferry Box sampling water

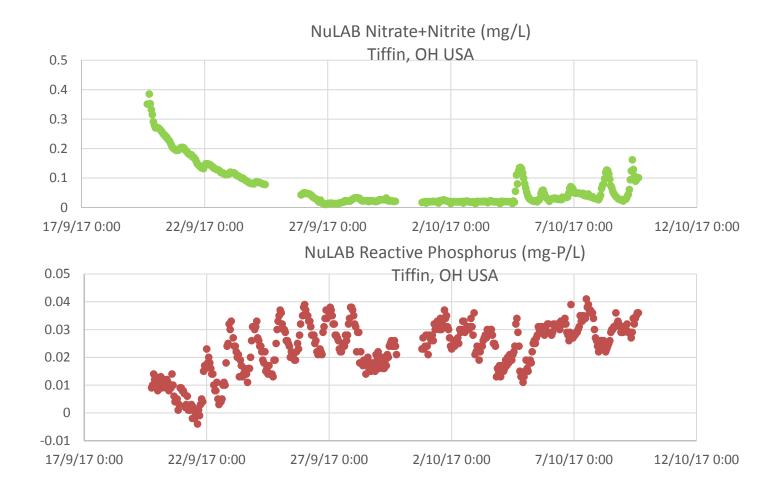
Thank you for your attention!

Contacts:

Dr Verena Dauben – MBT GmbH

✓ <u>v.dauben@m-b-t.com</u>

Dr Alexander Davidov – MBT GmbH


<u>a.davidov@m-b-t.com</u>

Specification of NuLAB

	Nitrite	N+N	Phosphate	Ammonium	Silicate		
Range (mg/l):							
High sensitivity detector	0.002 to 0.5	0.003 to 0.70	0.006 to 0.8	0.004-0.3	0.008 to 1.7		
Low sensitivity detector	0.008 to 2.1	0.01 to 2.8	0.025 to 2.0	0.02 to 1.0	0.04 to 2.8		
Precision (% of FS):	2	3	3	3	3		
Accuracy:	Based on the accuracy of the preserved on-board standard and sample replicate precision						
Analyses time (min):	9	13	14	17	16		

Environmental Protection Agency References

- Stickland & Parsons (1972)
- Grasshoff (1976)