

High frequency automated ammonia analysis for coastal water monitoring and FerryBox applications

P. Moscetta, L. Sanfilippo, E. Savino

User requirements for an on-line nutrient analyzers in Ferrybox systems

- Long term unattended autonomy
- Compactness
- High sensitivity
- Low reagents and sample consumption
- Low life-cycle cost
- Excellent reliability
- Easy interface with data-loggers
- Low maintenance by non expert users

Ferrybox applications with Micromac nutrient analyzers

AWI – BAH (Biologische Anstalt Helgoland) 2005

Marine Institute Tallinn 2007

MUMM (Belgica) 2011

NLWKN (Burchana) 2016

Micromac-1000 features and limitations in Ferrybox systems

Features:

- Unattended long term use
- High sensitivity for sea water measurements
- Compactness and portability
- Modularity
- Multiparametric capability
- 12 Vdc power supply.

Limitations:

- Silicone based not sealed hydraulics
- Electronics not separated from hydraulics
- Limited internal space for reagents
- No cooling for reagents
- High concentration requires dilution, with longer measurement time.

Trans National Action, Jerico project (2014) NH₃ and PO₄ μLFR units field test in Cuxhaven station and Lysbris Ferrybox

Data validation:

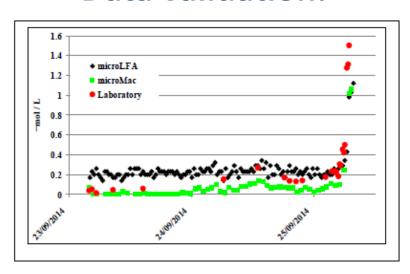


Fig. 9. Ferrybox PO₄ measurements performed with μLFA module (black diamonds), Micromac-1000 (green squares) and with a CFA instrument in laboratory (red dots).

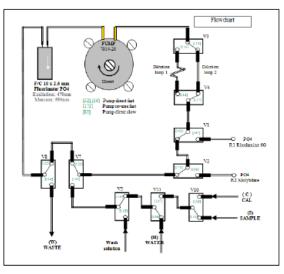


Fig. 4. The µLFA hydraulic circuit for fluorimetric phosphate analysis.

Field tests supported by:


Helmholtz-Zentrum
Geesthacht

NH₃ and PO₄ by fluorimetry. New instrumental layout, with sealed electronics and frontal hydraulics, to allow an easier maintenance

Micromac-1000 Total P & NH₃ with μ LFR hydraulics (2017)

New features:

- Teflon sealed hydraulics
- Lower reagents consumption enables longer unattended operation
- Smaller reagents volume -> easier cooling for longer unattended operation

Last proposed Micromac-1000 Nutrient instrumental configuration for Ferrybox systems

Micromac-1000 MP2 NO_x&NO₂:

- NO_x by UV-DTPA reduction and NED-SAA colorimetric method, cal. range 0-300 µg/L as N, MDL < 5 µg/L</p>
- * NO₂ by NED-SAA colorimetric method, range 0-50 μ g/L as N, MDL < 2 μ g/L

Micromac-1000 MP2 PO₄&SiO₂:

- * PO₄ by Molibdenum blue colorimetric method, cal. range 0-200 μg/L as P, MDL < 3 μg/L
- * SiO₂ by Molibdenum blue colorimetric method, cal. range 0-1.500 μg/L as SiO₂, MDL < 20 μg/L

Micromac-1000 NH₃:

* NH₃ by OPA fluorimetric method, cal. range 0-300 μg/L as P, MDL < 3 μg/L.

Max. measurement frequency: 20 minutes

Micromac Fast prototype, 2002 (NH₃, NO₃+NO₂, PO₄)

Available online at www.sciencedirect.com

Marine Chemistry 99 (2006) 191-198

Automatic colorimetric analyzer prototype for high frequency measurement of nutrients in seawater

F. Azzaro *, M. Galletta

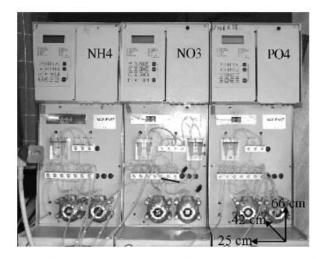


Fig. 1. MicroMac Fast MP3; module ammonia, nitrate and orthophosphate.

On-line nutrients monitoring on board of a boat.

For each module, n.2 detectors with sample heaters were integrated in the same hydraulics, working alternatively to speed-up the measurement.

Micromac Fast prototype, 2002 (NH₃, NO₃+NO₂, PO₄)

Table 2 Accuracy and precision for each method

Nutrient species		Known concentration (ppb)				
		15	10	7.5	5	2.5
Ammonia	Mean concentrat.	15.01	9.64	7.30	4.68	2.10
	Stand. deviation	0.13	0.16	0.10	0.20	0.10
	% RSD	0.84	1.68	1.37	4.13	4.55
Nitrate	Mean concentrat.	15.07	10.01	7.46	5.01	2.47
	Stand. deviation	0.37	0.32	0.18	0.29	0.15
	% RSD	2.36	3.18	2.45	5.85	6.23
Phosphate	Mean concentrat.	15.00	10.00	7.52	4.97	2.46
	Stand. deviation	0.11	0.23	0.15	0.18	0.13
	% RSD	0.74	2.35	2.01	3.54	5.11

Very high accuracy

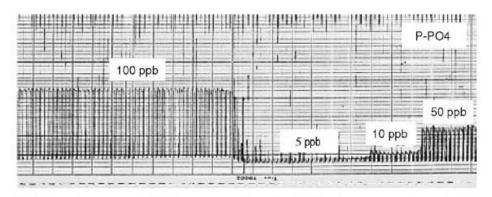
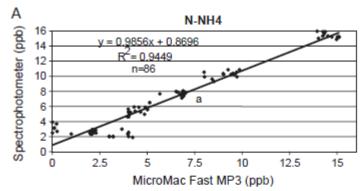
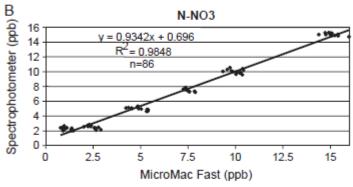
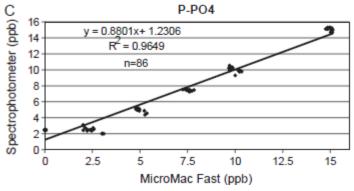
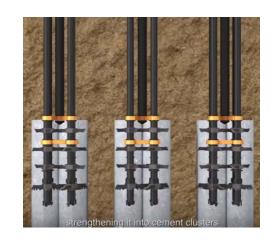
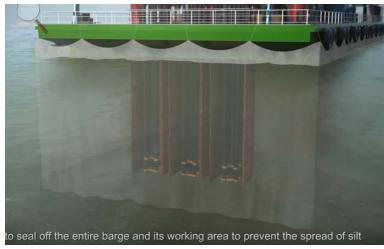





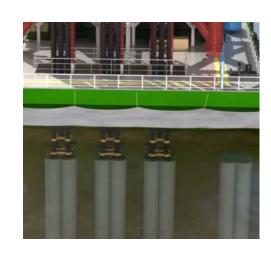
Fig. 3. Recorder traces-orthophosphate product of reaction in 300 s, frequency samples each 150 s.

Measurement frequency: 150 seconds!

NH₃ on-line monitoring for land reclamation project 3rd Hong Kong airport runaway (2016)


Land formation of around 650 hectares requires more than 40 barges in continuous operation day&night




NH₃ on-line monitoring for land reclamation project 3rd Hong Kong airport runaway (2016)

Deep Cement Mixing

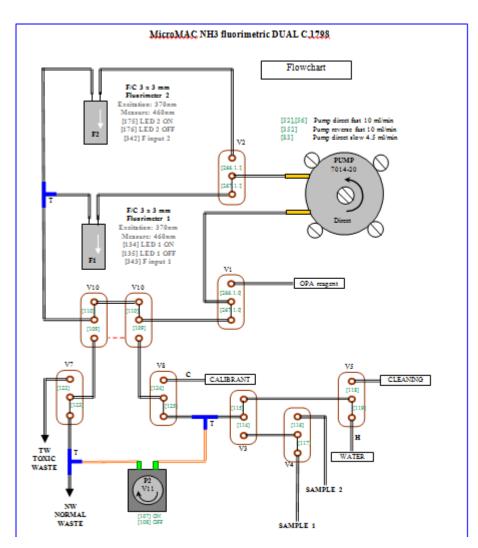
NH₃ on-line monitoring for land reclamation project 3rd Hong Kong airport runaway (2016)

Each barge includes n.4 points of water quality monitoring of standard physical-chemical parameters and ammonia at the corners of the platform.

More than 40 barges are actually in operation, including more than 130 Micromac-1000, working as:

- Single stream analyzers, allowing 5 minutes monitoring frequency
- Double stream analyzers, allowing <u>6 minutes</u> monitoring frequency on both streams.

Measurement range: 0-1 mg/L as N, up to 20 mg/L in dilution



μLFR hydraulic schema Micromac-1000 NH₃ double stream

OPA fluorimetric Range: 0-1 mg/L MDL: 20 µg/L

NH₃ on-line monitoring system on each barge (4 points of measurement)

0.1 microns cut-off filtration unit with autocleaning capability

- 150 mL of filtered water in 3 minutes
- Automatic backwash using the same filtrate performed after analyzer's sampling
- Easily managed by an external data-logger
- Tested long term unattended operation
- Volume compatible with µLFR units for Ferrybox application.

Nutrient Sensor Challenge by ACT,

USA (2016)

Open perspectives for the use of µLFR technology for on-line nutrients monitoring in Ferrybox systems

- Lower reagents consumption -> longer unattended use, lower reagent volumes, easier cooling and lower maintenance frequency
- Measurement frequency down to 5 minutes (monoparametric configuration)
- Enhanced hydraulics reliability -> lower maintenance
- > Full compatibility with existing monitoring systems
- > Two operation modes available:
 - 5 minutes frequency near the coast -> to measure higher concentrations, without dilution
 - 10 minutes frequency -> higher sensitivity in open sea

QUESTIONS TO FERRYBOX USERS

- Multiparametric configuration:
 - Lower capital cost, higher complexity of each module
 - 20 minutes minimum measurement frequency
- Monoparametric configuration:
 - Higher capital cost. Easier handling and maintenance
 - 5 minutes minimum measurement frequency
- Available instrumental layouts:

Waiting your answer and comments, thanks for your attention!