8th FerryBox Workshop

Robust Sequential Injection Analyzer for autonomous Nutrient Analysis

D. Blandfort, C. Ahlers, Helmholtz-Zentrum Geesthacht, Institute of Coastal Research

Mission Objective and resulting Design Goals

"To construct a platform for the development of reliable, autonomous nutrient Analysers, usable on-board ships in ocean and river environments in liaison with the FerryBox-System"

- → Flexibility
- → Remote supervision and control
- → Low detection Limits

- → High Reliability
- → Low reagent consumption
- → High Sample Frequency

Implementation of Requirements and Design Goals

- → Flexibility
 - → 16-Port Valve
 - → Raspberry Pi; Python
- → Remote controllable
 - → Connectivity via Ethernet, W-Lan, Bluetooth, Serial, ...
- → Low detection Limits
 - \rightarrow 50 mm cuvette for NO_x
 - → Hamamatsu Spectrometer

- → High Reliability
 - → Atmega Microcontroller
 - → Internal Error detection
- → Low reagent consumption
 - → Small diameter piping (0.25 mm)
 - → Smallest available diameter for cuvette
- → High Sample Frequency
 - → Hamamatsu Spectrometer

Robust Sequential Injection Analyzer for autonomous Nutrient Analysis Drawbacks of the chosen Set-up

- → Material of sealing disk
- → Blocking due to small diameter
- → Cavitation effects
- → length of the cuvette

NOx Analyser | Limits | Experience | Outlook

Reagent Consumption

Puffer: 0.17 ml

Colour: 0.17 ml

Sample: 0.50 ml

 NO_2

Detection Limit: ~ 0.1 µmol/l

Duration: ~50 s

 NO_3

Detection Limit: ~ 1.9 µmol/l

Duration: ~ 10 min

PO4- Analyser | Limits | Experience | Outlook

Reagent Consumption

Acid: 0.20 ml

Colour 0.20 ml

Sample: 0.50 ml

 PO_4

Detection Limit: ~ 0.05 µmol/l

Duration: ~60 s