Identification of spatial hydro-emer biological structures by spectral clustering. Towards implementation of machine learning for Ferry Box data processing.

- ¹ Ifremer, Boulogne sur Mer, France
- ² WeatherForce, Toulouse, France
- ³ LISIC, EA 4491, Université du Littoral Côte d'Opale, Calais, France ⁴ Ifremer, NSE, Brest, France

NEW 2018 HF Strategy

NORT

RV Thalassa's Ferrybox

Manufacturer: Thermosalinograph Oxygen: Turbidity Fluorescence pH:

-4H-Jena, "Ferrybox I" SBE45 + SBE21 Anderaa 4835 Seapoint BBE-AOA Meinberg MV3010 (for tech. purpose)

remer

IFREMER's RV Thalassa FB Guideline available here:

https://doi.org/10.13155/59685 143 pages... But... Only !

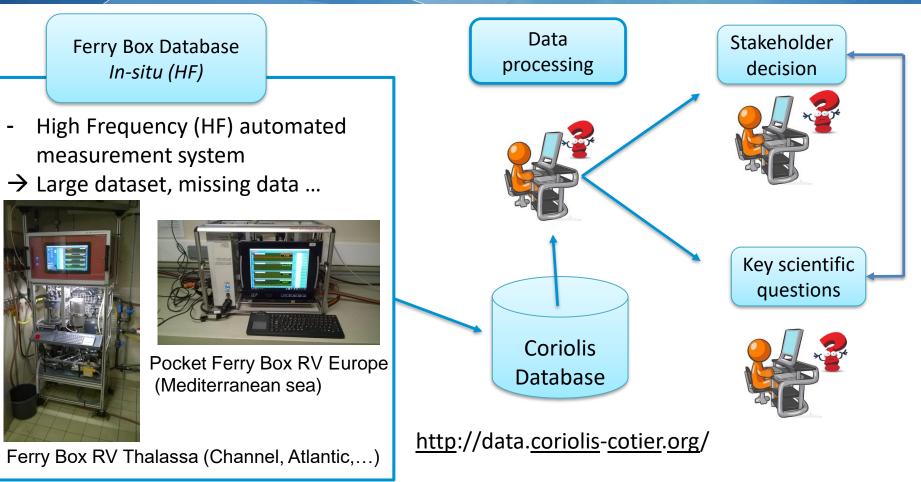
MERICA

In June 2019, Thalassa will sail in Mediteranean sea (<u>MOOSE</u> cruise)

March: "PIRATA" <u>Thalassa's path in 2018:</u> all European cruises are renewed year after year since 20 years at the same period on the same transect, and it will bring a huge FB data set in the coming years

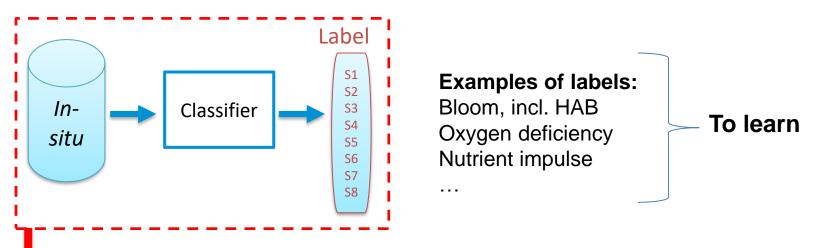
2018 statistics:

Thalassa sailed ~245 days The Ferrybox was running 229 days Operational ratio: 93% ! STRATEGY AND OBJECTIVES



- How to optimize **data processing** and results interpretation?
- How to detect and characterize environmental states in multi-parameters time series?
- How to identify **frequent, rare or extreme events** and their **dynamics in time series**?

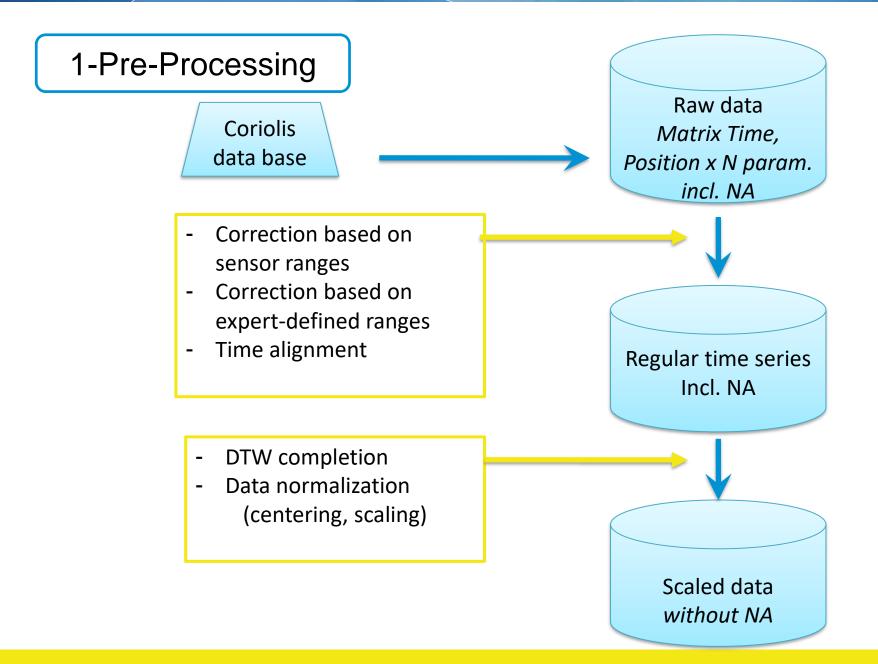
Towards implementation of machine learning for Ferry Box data processing YES but first step = Labelling via Classification



The spectral classification allowed to :

- Define **environmental states** in multi-parameter time series
- Detect, identify in time and space and characterize states dynamics
- Extract <u>label</u> for frequent, rare or extreme events

PROTOCOL



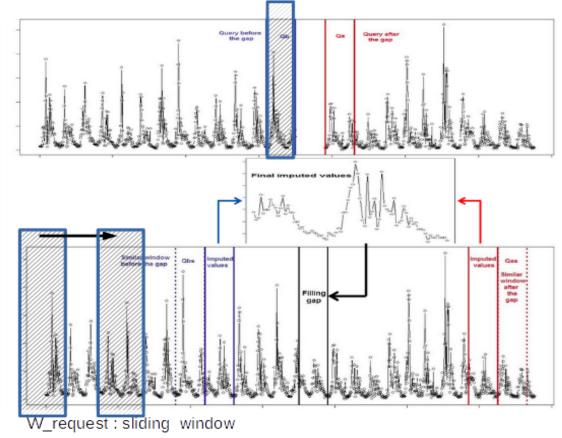
1-Pre-Processing

Ifremer.

DTWBI Algorithm

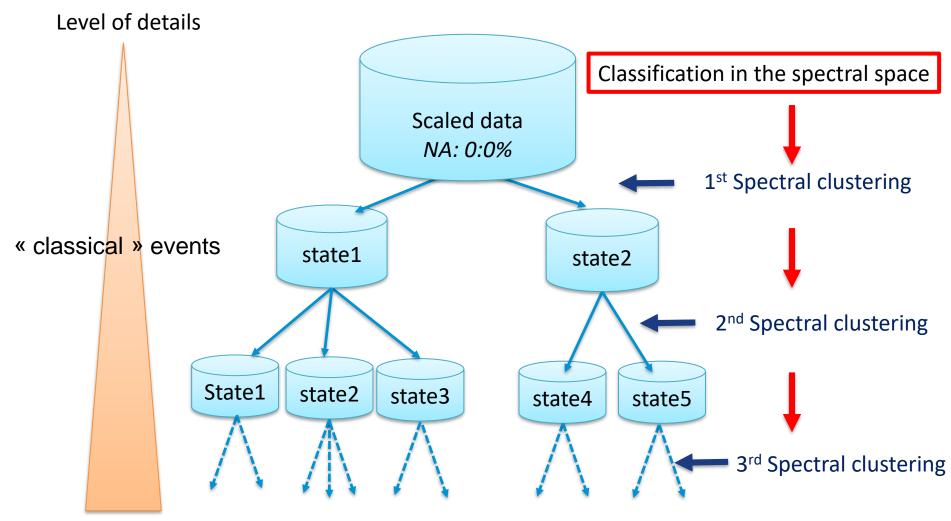
Missing interval imputation (ICCE'2016, OCEANS 2017).

DTW query building (two ways : mono/multivariate series)



- 1. Feature extraction from Query Qa/Qb and W_Request.
- Selection of n W_request that satisfied cosinus criterion.
- Computation of DTW function on the W_request and selection of a unique Qbs.
- Direct Imputation or mixing from Qbs and Qba.

2- Processing : Multi-level Spectral clustering

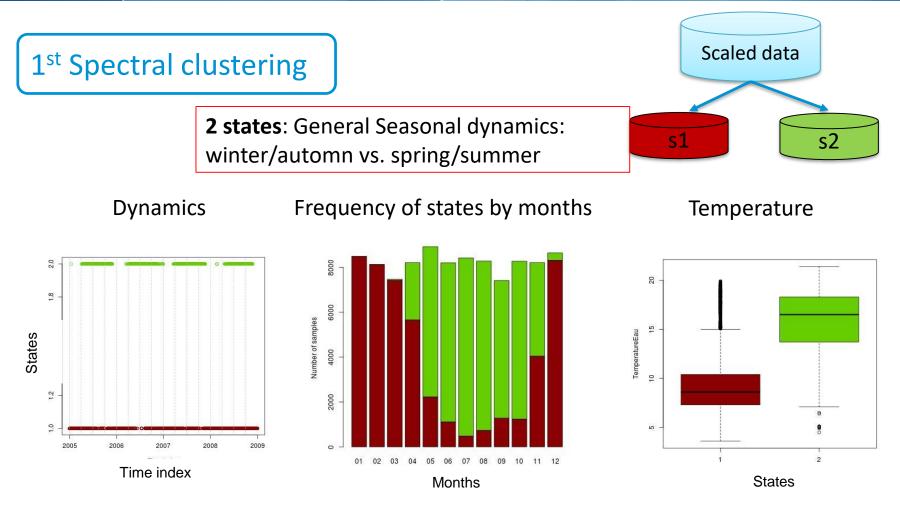


PROTOCOL

fremer

Extreme, rare events

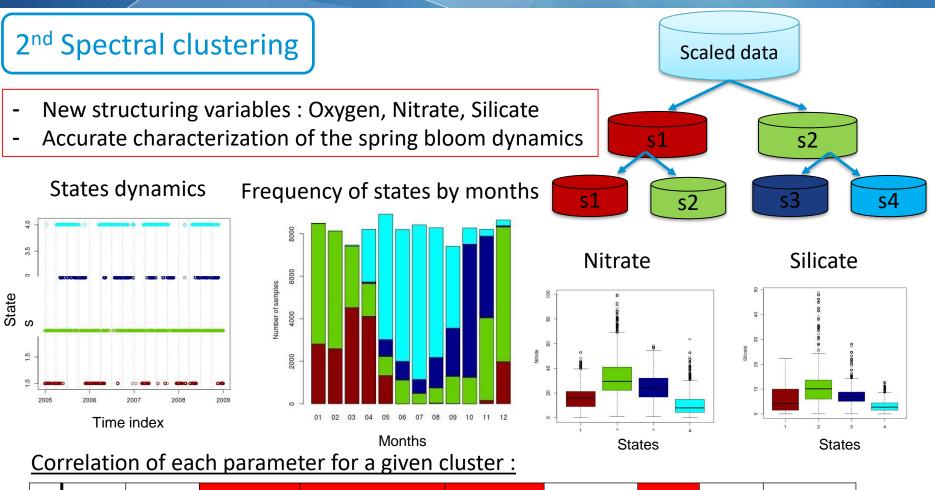
STATES DO AMIC AND MAIN CONTRIBUTING PARAMETERS



Correlation of each parameter for a given cluster :

	Salinity	Turbidity	Temperature	Dissolved Oxygen	Nitrate	Phosphate	Silicate	PAR	Sea Level
S1	-0.35	0.30	-0.73	0.52	0.38	0.21	0.38	-0.21	0.014
S2	0.35	-0.30	0.73	-0.52	-0.38	-0.21	-0.38	0.21	-0.014

STATES DONAMIC AND MAIN CONTRIBUTING PARAMETERS



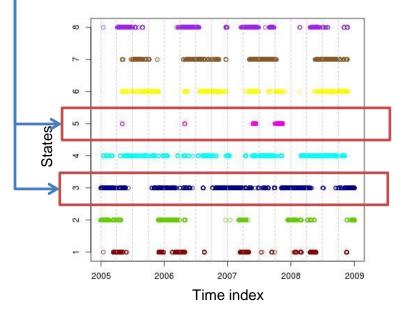
	Salinity	Turbidity	Temperatur e	Dissolved Oxygen	Nitrate	Phosphate	Silicate	PAR	Sea Level
S1	0.04	-0.08	-0.48	0.62	-0.16	-0.14	-0.06	-0.09	0.02
S2	-0.41	0.40	-0.39	0.05	0.53	0.34	0.47	-0.15	-0.002
S3	0.30	-0.11	0.30	-0.46	0.11	-0.02	0.02	-0.05	0.009
S4	0.13	-0.23	0.53	-0.19	-0.48	-0.19	-0.42	0.26	-0.02

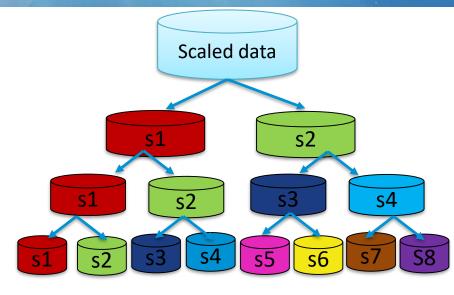
STATES DONAMIC AND MAIN CONTRIBUTING PARAMETERS

3rd Spectral clustering

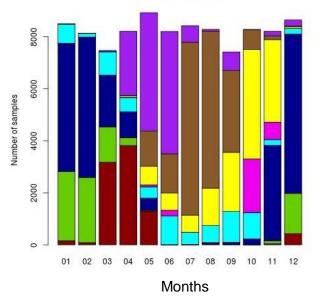
8 states with 2 different dynamics: Regular (blue) vs. rare events (pink)

Dynamic states

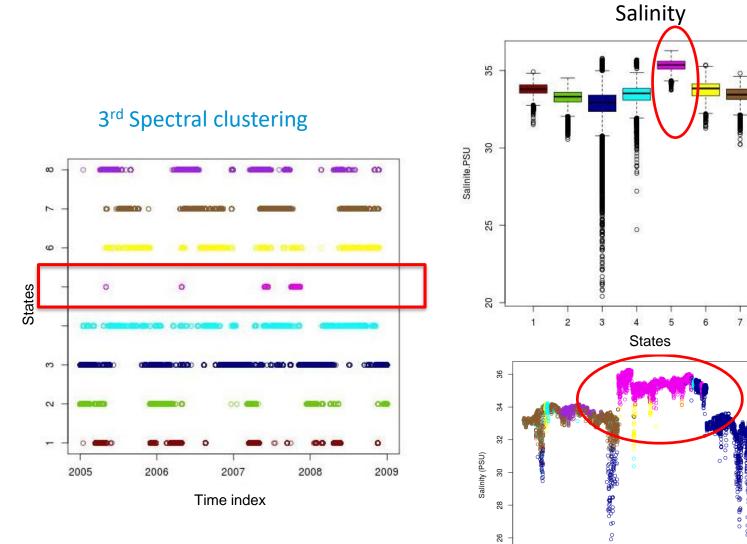




Frequency of states by months



EXAMPLE OF STATES LABELISATION Afremer.



11

Jan

8

Time

Nov

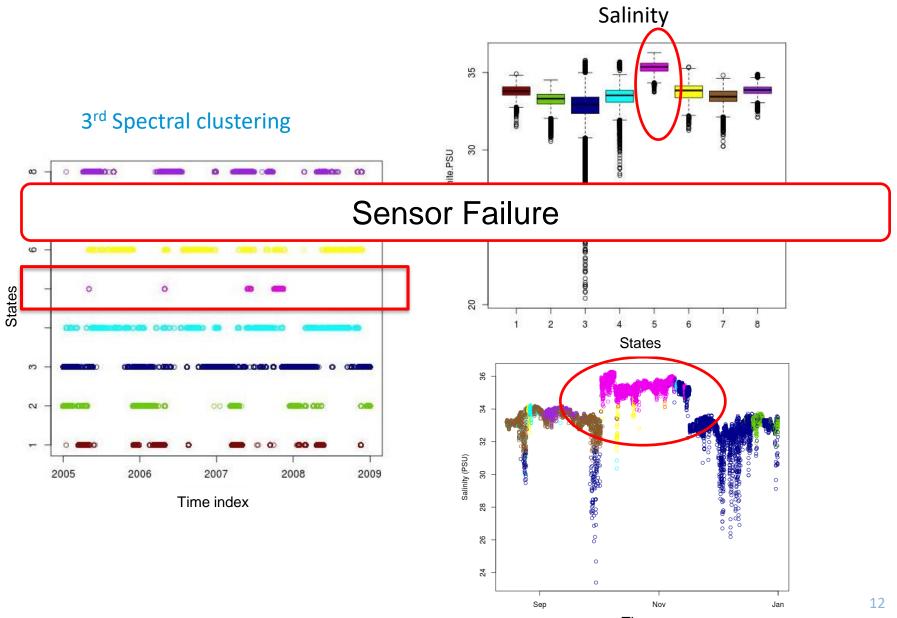
0

0

Sep

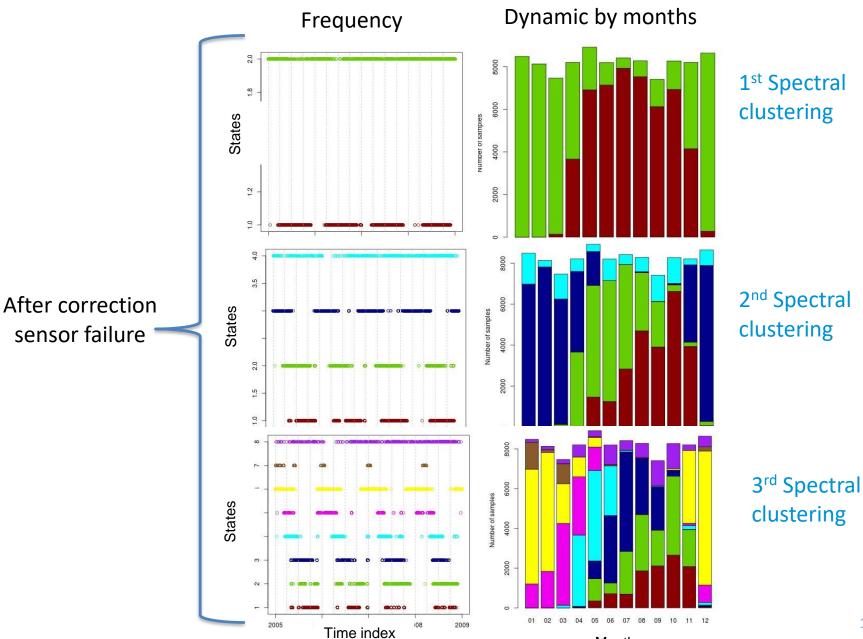
24

EXAMPLE OF STATES LABELISATION Themer.



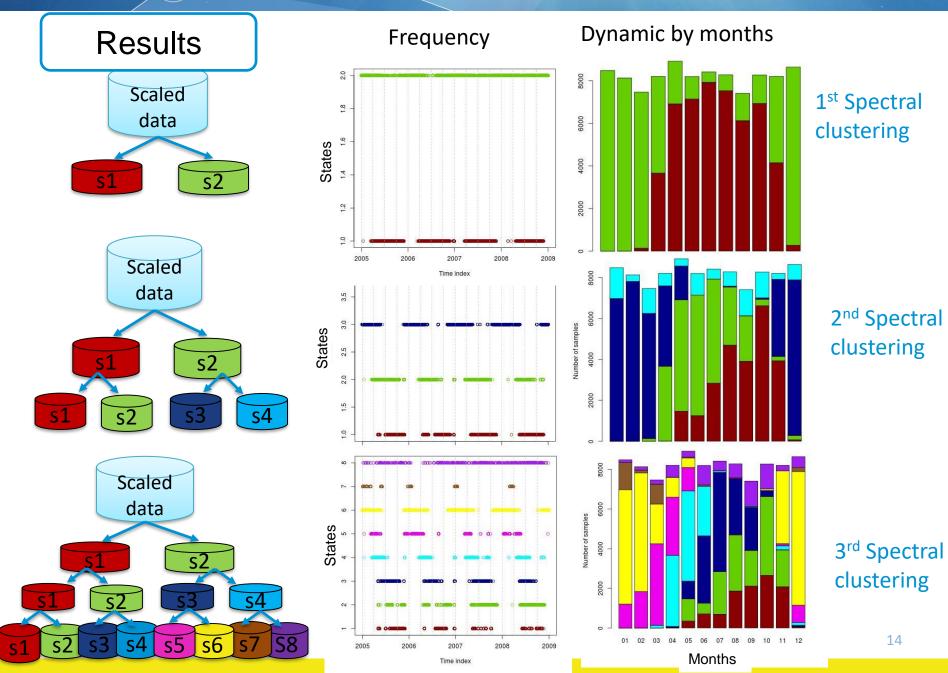
Time

STATES DONAMIC AND MAIN CONTRIBUTING PARAMETERS



Months

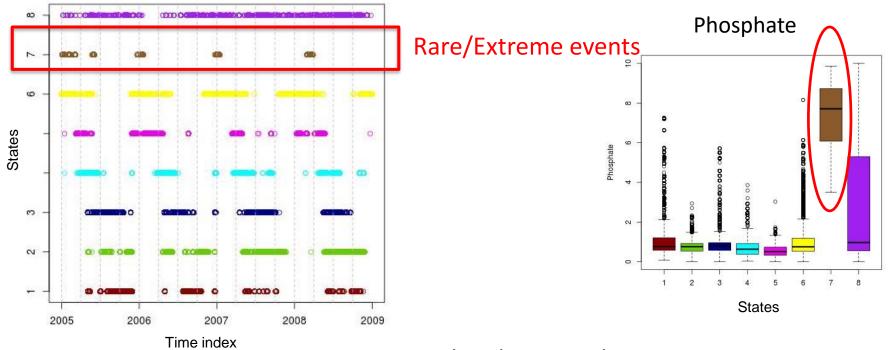
STATES DONAMIC AND MAIN CONTRIBUTING PARAMETERS



Detection of environmental states

Intermittent Events : rare/extreme

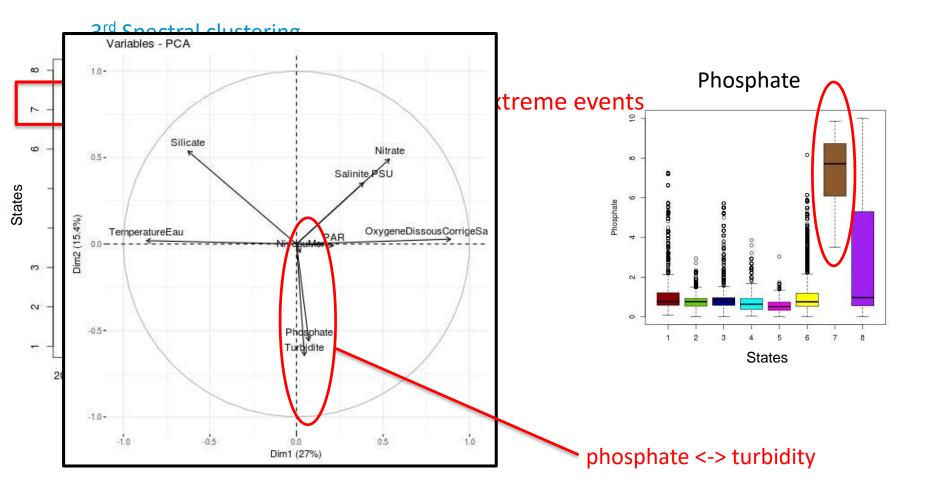
3rd Spectral clustering



Phosphate Correlation State 7 = 0.62

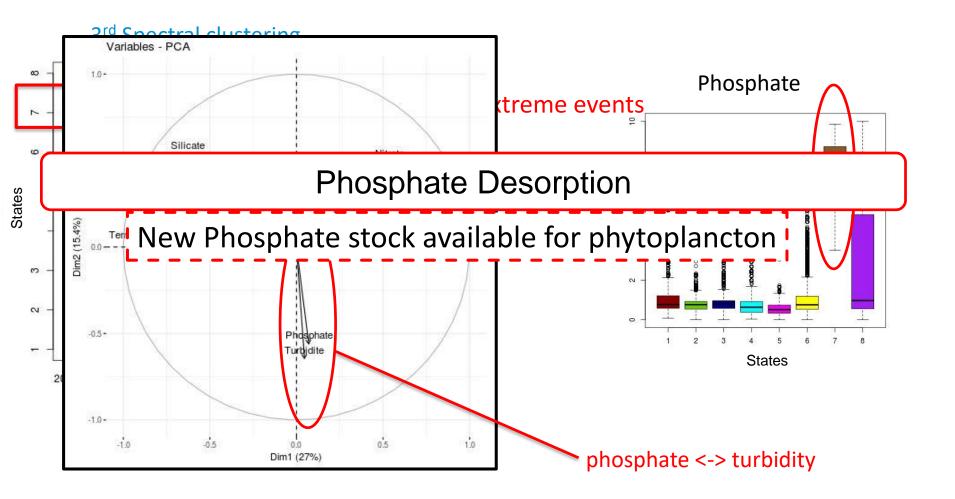
Detection of environmental states

Intermittent Events : rare/extreme

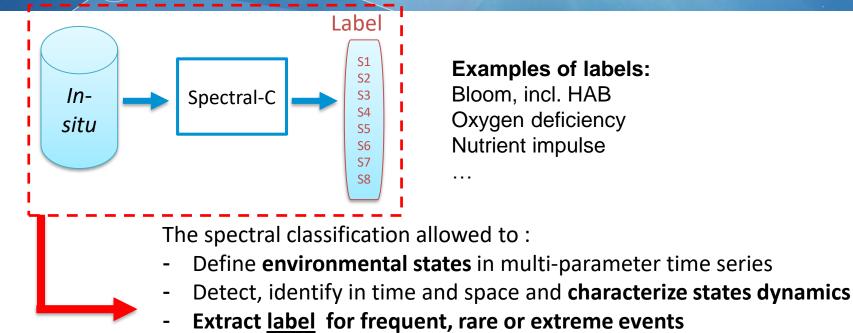


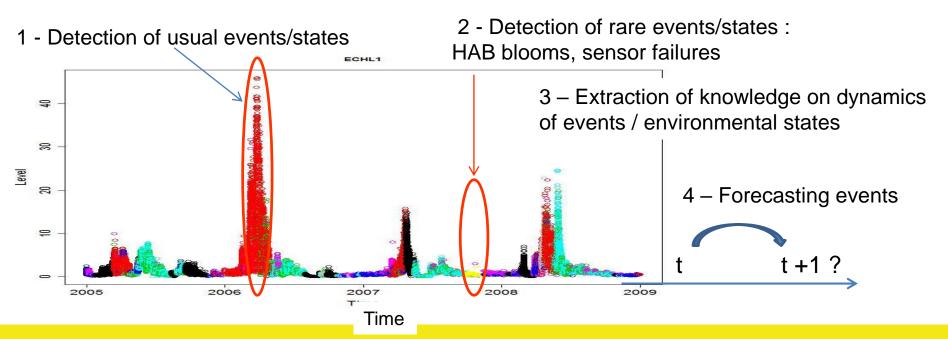
Detection of environmental states

Intermittent Events : rare/extreme



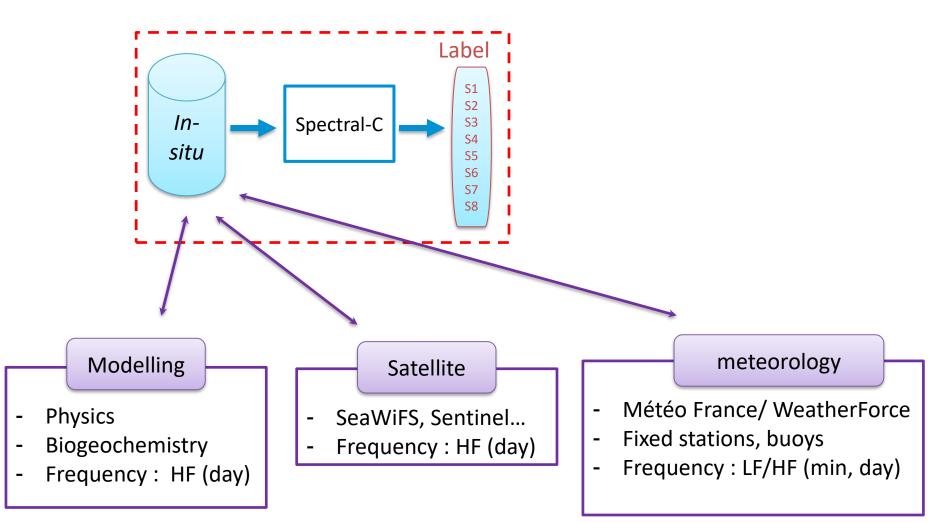
CONCLUSION - PERSPECTIVES



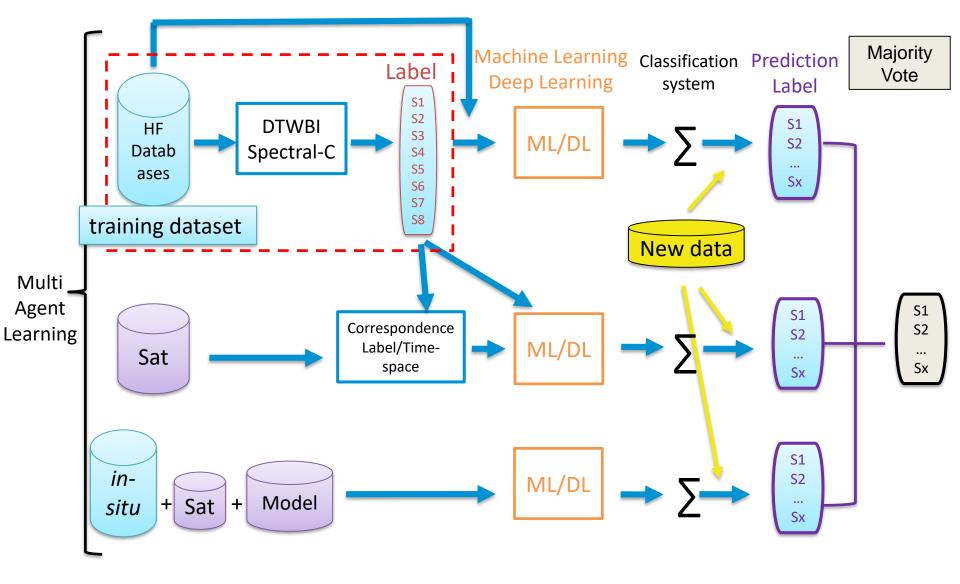


ADDING NEW DATA SOURCES

fremer



MACHINE LEARNING / DEEP LEARNING



Thank you for your attention

The authors want to acknowledge H2020 JERICO-Next for their financial contribution as well as the organizers.

This work has been also partly funded by the French government and the region Hauts-de-France in the framework of the project CPER 2014-2020 MARCO

Kelly Grassi's PhD is funded by WeatherForce as part of its R & D program "Building an Initial State of the Atmosphere by Unconventional Data Aggregation".

