Towards Near Real Time Validation of Chlorophyll Fluorescence

<u>Seppo Kaitala</u>, Jukka Seppälä, Petri Maunula, Pasi Ylöstalo, Kari Kallio SYKE, Marine Research Center

> 5th FerryBox Workshop - Celebrating 20 Years of Alg@line April 24-25, 2013

Finnish Environment Institute (SYKE), Helsinki, Finland

Alg@line Flow-through recording and water sampling points by M/S FINNMAID

Annual succession 2012 Chlorohyll from water samples Gulf of Finland and Northern Baltic

Strong light induced quenching of fluorescence during day-time in the Equatorial Pacific. As shown in Hout and Babin 2010, originally in Dandonneau et al. 1997

MARINE RESEARCH CENTRE

Normalized chlorophyll-a fluorescense against sun elevation, Finnmaid data 2012

Normalized chlorophyll-a fluorescense against sun elevation, February, March, April, 2012

Sun elevation

MARINE RESEARCH CENTRE

Regression estimates February, March, April, 2012

chla1<-Im(formula = chla ~ SochIfI)

summary(chla1) Multiple R-squared: 0.964 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.47047 0.17701 -2.658 0.00924 ** Sochlfl 0.92820 0.01847 50.247 < 2e-16 ***

chla2<-Im(formula = chla ~ Sochlfl+elevation) summary(chla2) Multiple R-squared: 0.969

Contribuition of elevation 0.5% !

Normalized chlorophyll-a fluorescense against sun elevation, May, June, 2012

Sun elevation

Regression estimates May, June, 2012

chla1<-Im(formula = chla ~ Sochlfl) summary(chla1) Multiple R-squared: 0.870,

chla2<-Im(formula = chla ~ Sochlfl+el) summary(chla2) Multiple R-squared: 0.8769,

chla3<-lm(formula = chla ~ Sochlfl+Soturb) summary(chla3) Multiple R-squared: 0.8877

Normalized chlorophyll-a fluorescense against sun elevation, July, August, September, 2012

Sun elevation

Regression estimates July, August, September, 2012

chla1<-Im(formula = chla ~ SochIfI) Multiple R-squared: 0.5435

chla2<-lm(formula = chla ~ Sochlfl+Sopcfl) Multiple R-squared: 0.5502

chla3<-lm(formula = chla ~ Sochlfl+Sopcfl+Soturb) Multiple R-squared: 0.5553

chla4<-lm(formula = chla ~ Sochlfl+Sopcfl+Soxtemp) Multiple R-squared: 0.5689

Normalized chlorophyll-a fluorescense against sun elevation, October, November, December, 2012

MARINE RESEARCH CENTRE

SYKE

12

Regression estimates July, August, September, 2012

chla1<-Im(formula = chla ~ Sochlfl) Multiple R-squared: 0.8388

chla2<-lm(formula = chla ~ Sochlfl+Soturb) Multiple R-squared: 0.8491

chla3<-Im(formula = chla ~ Sochlfl+Soturb+Soxtemp) Multiple R-squared: 0.8876

13

Conclusion

Light induced quenching of chlorophyll fluorescence during day-time has minor effect in the Baltic Sea

However, records from of Pyhtää buoy, probably indicating phytoplankton migration

Measurement water quality observations with navigation buoys

Buoy structure

Design of water quality system (Smarctic) buoy system: Luode Consulting Oy

Buoys manufactured by MeriTaito Ltd

Baltic Princess ferrybox observations Marine Systems Institute, Tallinn, Estonia

17

Thank you

