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Report on Suitability of Existing Data Assimilation 
Schemes for Use with Ferrybox Data 

Within the FerryBox Project (see http://www.ferrybox.org), ferries operating along 9 lines in 
European Seas1 are equipped with boxes capable of measuring temperature, salinity, 
turbidity and fluorescence (chlorophyll-a) at the surface. In certain lines, additional equipment 
is available: oxygen/pH sensors, nutrient sensors/analysers, photosynthetic available 
radiation (PAR) for validation of satellite remote sensing data, Acoustic Doppler Current 
Profiler (ADCP) for water current measurement, Fast Repetition Rate Fluorometer (FRRF) 
and an algal classes detector. 

In FerryBox work package WP-5, one of the tasks is to test and optimize existing data 
assimilation algorithms for their use with FerryBox data. Fields addressed are temperature, 
salinity, nutrients and suspended sediment concentrations. The modelled areas will be the 
Irish Sea, the Southern North Sea and the Mediterranean Sea, in all of which coastal 
processes play a key role. 

This document introduces the particularities of the coastal ocean, where strong nonlinearities 
and anisotropies limit the range of suitable data assimilation methods. Some of the methods 
which have already proved successful in coastal systems are then presented with the focus 
on those which are coded into FerryBox models.  

1 The Coastal Ocean 

A thorough review on data assimilation and its specificities in coastal systems was written by 
Robinson et al. (1998). 

In coastal areas, processes range from the mesoscale ocean in the inner shelf, to quicker 
and smaller scale processes near the shore. The flow can be strongly nonlinear, reducing the 
limit of predictability2. (Lorenz, 1963a; Lorenz, 1963b, Lorenz, 1965; Lorenz, 1968). As model 
resolution increases and smaller-scale phenomena are resolved, the validity of model 
linearisations is reduced, because error growth is quicker and the energy levels lower. 

The particularities of coastal geometry and of topography and the influence of local forcing 
regimes make this an anisotropic system, with at least different scales in the long-shelf 
versus the cross-shelf directions. The spatial structure of the background (forecast) error 
statistics can not be stated a priori (Echevin, 2000; Echevin et al., 2000). 

A suitable assimilation scheme for high resolution monitoring/prediction systems has to 
account for the nonlinearities of the flow. It also has to have a fair representation of the 
spatial anisotropy of the background/forecast error and estimate its time evolution. 

 

 

                                                 
1 Baltic Sea, Skagerrak, North Sea, Wadden Sea, Irish Sea, Solent Estuary, Bay of Biscay and Mediterranean 

Sea. 
2 At times longer than this limit, two different estimations of a same dynamical model with exceedingly small 

perturbations in the initial conditions will have become as different as two randomly chosen states of the 
model. 
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2 Some Suitable Methods for Assimilation in Coastal 
Systems 

In this section, we comment on some methods that are potentially adequate for assimilation 
in coastal systems. These methods are grouped as sequential and variational methods. 

2.1 Sequential Estimation 

Generalisation of Linear Estimation Theory for nonlinear estimation led to the Extended 
Kalman Filter (EKF) (Jazwinski, 1970). In its formulation, it is assumed that the nonlinear 
observation (H), and model (M) operators can be approximated by their Jacobians if both the 
background an the analyzed state of the system lie close enough to the true state of the 
system.  

Under this (tangent linear) hypothesis, the analysis xk
a obtained at an observation time, tk, is 

the sum of the background state xk
b plus a correction term that weights the innovation (yk

o-
Hxk

b) brought up by the observation vector, yk
o, with respect to the background state at the 

observation locations, Hxk
b. 
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where Pb

k is the background error covariance matrix, and Rk the observation error covariance 
matrix. H is the observation operator, that projects the background error onto the space 
generated by the observations (this can be interpolation of the model output from the model 
grid onto the observation points, but can also include transformations that express the model 
variables in terms of the observed fields, which can sometimes be different). 

At each analysis step, the error statistics are also updated following: 
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Here, Pak is the new analyzed error variance, that gives an estimate of the accuracy of the 
analyzed state xak. H’ is the Jacobian operator of the nonlinear operator H. 

Between two analysis(/observation) times, the model calculates the evolution of the error 
covariance matrix as: 
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Approximations of the EKF have been successful in some cases (Fukumori and Malanotte-
Rizzoli, 1995). Nevertheless, an article written by Evensen (1992) pointed out that this 
method could lead to unbounded instability of the error, due to linearization of the error 
covariance propagation equation. In that same article, Evensen concluded that the use of the 
full EKF would require either extensive data coverage able to control the instability, or some 
higher order closure equations that damp it. In a latter publication, Evensen (1993) showed 
the difficulty of handling open boundary conditions in the treatment of the approximate error 
evolution equation. He then proposed an alternative method, capable of coping with the 
problems associated to the EKF in nonlinear systems. 

2.2 The Ensemble Kalman Filter (EnKF) 

The alternative method proposed by Evensen(1994) was the Ensemble Kalman Filter 
(EnKF). In this scheme, the probability density function of the initial state is represented by 
an ensemble of initial states of mean equal to the best guess initial condition. Initial variance 
of the ensemble is set equal to that first guess estimated uncertainty. At each analysis step, 
the first and second order statistical moments of the system are estimated from the 
ensemble of states attained through integration of the initial ensemble (a priori ensemble). 

Brusdal et al. (2003) discuss three ensemble based methods (Singular Evolutive Extended 
Kalman, Ensemble Kalman Filter and Ensemble Kalman Smoother) from the perspective of 
operational marine monitoring and forecasting systems. 

2.3 The Singular Evolutive Extended Kalman Filter (SEEK) 

Pham et al. (1998) present a Single Evolutive Extended Kalman Filter, that parameterizes 
the initial error covariance matrix as a low rank matrix in the phase subspace spanned by the 
fastest error growing directions: 

,LULP T
kkk

a
k =  

with Lk,the column vector containing the directions of greatest error amplitude (EOFs) and 
Uk a positive definite matrix containing the associated eigenvalues. 

The error subspace spanned by these EOFs evolves during the assimilation according to 
model dynamics. 

Brasseur et al. (1999) implemented an improved version of the filter in which the statistical 
structure of the error covariance is learned from the innovation vector at each analysis step. 

The SEEK filter provides a correction in accordance with the fluid situation at each time-step. 
It is suitable for coastal applications, as it doesn't need assumptions on homogeneity or 
symmetry of P. 

This method is widely used at present, with applications in ecosystem modelling (Hoteit et 
al., 2003) amongst others. 

Deliverable no.: D-5-2 
Revision  2.0 Page 4 PU – Public 
Contract number:  EVK2-2002-00144     

 



 

Report on Suitability of Existing Data Assimilation Schemes for Use with Ferrybox Data  
and the FerryBox WP-5 Team 

 

2.4 The Error Subspace Statistical Estimation (ESSE) 
Approach 

ESSE (Lermusiaux, 1997; Lermusiaux and Robinson, 1999) is an efficient statistical 
estimation scheme for data assimilation in realistic nonlinear ocean models. In this approach 
the error covariance matrix is truncated on it's dominant EOFs at each assimilation time. 
Nonlinear Monte Carlo forecasts that use the full nonlinear model integrate this error 
subspace (ES) in time. The members of the a priori ensemble are chosen so as to optimally 
sample the error subspace. The a posteriori members are used to sample the new ES. The 
melding criterion minimizes the variance in this ES. Therefore, the dynamical forecast is 
corrected by data there where the errors are more energetic. The assimilation is multivariate 
and 3D in physical space. It also takes into account model nonlinearities and errors in an 
explicit manner. This method can be implemented through parallel computing. 

ESSE is much less costly than classical analyses involving full covariances. Furthermore, the 
evolving ES is allowed to vary in size, eigenbase and eigenvalues with time and on multiple 
scales (Lermusiaux, 2001). 

The general concept, objectives and details of Error Subspace Statistical Estimation are 
discussed in Lermusiaux (1997). Sloan (1996) compares results obtained through this 
method and through OI in a twin experiment of an idealized shelf-break-front simulation: 
ESSE improves the quality of the retrieval of the true ocean, with better representation of the 
non-homogeneous and anisotropic physical characteristics (shape, location and scales of 
physical characteristics). 

2.5 Variational Estimation 

In variational estimation, the solution of the Generalized Inverse problem, is a set of states 
(modal points) that minimize the objective or cost function JN. This accounts for the misfit 
between the real initial conditions of the system and the initial conditions actually used (J0) , 
the misfit between real and available boundary conditions (Job), that between model forecast 
and observations at observation times (Jo) and the contribution of model error (Jm). In each 
of the terms of JN, misfits are weighted by the corresponding accuracies, represented as the 
inverses of the error covariance matrices. 
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In variational assimilation the problems arising from strongly nonlinear dynamics suggest the 
use of direct substitution algorithms, that solve the generalized inverse problem without the 
integration of forward and adjoint model equations. The method that we would retain is a 
Gradient Descent Method. 

Deliverable no.: D-5-2 
Revision  2.0 Page 5 PU – Public 
Contract number:  EVK2-2002-00144     

 



 

Report on Suitability of Existing Data Assimilation Schemes for Use with Ferrybox Data  
and the FerryBox WP-5 Team 

 

2.6 Gradient Descent Methods 

These methods iteratively determine directions descending locally along the cost function 
surface. At each iteration, a line search minimization is performed along that local direction 
and a new descending direction is found. Examples of descent methods are the conjugate 
gradient method and the Newton and quasi-Newton methods. 

Evensen and Fario (1997) used a gradient descent method that minimized the weak 
constraint problem by calculating the gradient of the cost function with respect to the full state 
in space and time. It consisted of an iterative method in which a new candidate for the 
solution was substituted after each computation. The conclusions of this work were that the 
method would work well for good data coverage. For poor data coverage Simulated 
Annealing was proposed as a better alternative. 

Evensen (1997) compares the goodness of the EnKF, of an ensemble smoother method 
(van Leeuwen and Evensen, 1996) and of the gradient descent method to solve the highly 
non linear Lorenz model (Lorenz, 1963a). 

The major drawback of descent methods is that they are all initialization sensitive. For 
nonlinear cost functions they must be restarted several times to avoid local minima. 
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3 Data Assimilation Schemes within FerryBox 

3.1 In the HCMR POSEIDON Model System for the 
Mediterranean 

An assimilation scheme based on the SEEK filter has been implemented into the Princeton 
Ocean Model which is the core of the POSEIDON pre-operational high resolution 
hydrodynamic model. The latter is a component of the POSEIDON operational monitoring 
and forecasting system that operates in the Aegean Sea since 1999 (Nittis et al., 2001).  

SEEK filter being a multivariate sequential assimilation method is an efficient tool for 
optimally handling observation data sets such as those (sea surface temperature and 
salinity) that will be derived through the FerryBox activities at HCMR. 

We describe briefly the theory behind the SEEK filter and its variant the SFEK filter as well as 
their implementation into the POM model. 

3.1.1 The SEEK/SFEK Filters 

The Singular Evolutive Extended Kalman filter (SEEK) introduced by Pham et al. (1998) is an 
extended Kalman filter based on a singular low rank error covariance matrix. SEEK 
approximates the full error covariance matrix with a singular low rank matrix reducing in this 
way the implementation cost and on the other hand improving the filter stability. Thus, 
instead of reducing the system (model) state vector the filter approximates the error 
propagation respecting in this way the system dynamics.  

Assume an ensemble of random members that describe the probability distribution of a given 
system. An EOF (Empirical Orthogonal Functions) decomposition of the ensemble usually 
defines those few dominant directions that are necessary to describe the spreading of the 
ensemble. SEEK filter uses these dominant directions to construct its error subspace initially 
and evolves them in time according to the extended Kalman filter equations. 

Let the error covariance matrix be factorized as a
iP T

i i iLU L .  

The SEEK filter operates in two stages: 

Forecast Stage 

The model is used to compute the forecast state fX at time initialized from the analysis 

state  available at time : 
it

aX 1it −

( )1 1( ) , ( )f a
i i i iX t M t t X t− −=   (1) 

where 1( , )i iM t t− is the model transition operator. 
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Correction Stage 

The analysis state  at time is estimated as: aX it

( ) ( ) ( )a f o f
i i i i i iX t X t K Y H X t⎡ ⎤= + −⎣ ⎦   (2) 

where the Kalman gain matrix  is given by iK
1T T

i i i i i iK LU L R−= Η   (3) 

and 
1 1 1

1 0T T
i i i i i i iU U L R Lρ ρ− − −

−= + Η Η < 1<

1i

 (4) 

In Eq.2, is the observations vector (available at time ) and is the observation 
operator which simply projects the model’s state onto the locations of the observations. In 
Eq.3,  is the gradient of the observation operator and  is the observations error 
covariance matrix. The latter is usually taken as a  diagonal matrix by assuming that the 
observations are spatially uncorrelated. Note that in cases of a linear observation operator 

.  

o
iY it iH

iΗ iR

i iHΗ =

The correction basis  evolves in time according to: iL

1( , )i i iL t t L− −= Μ  (5) 

where is the gradient of the model transition operator evaluated at 1( , )i it t−Μ 1( )a
iX t − . The 

analysis error covariance matrix is given by: ( )a
iP t

( )a
i i iP t LU L= T

i   (6) 

The factor ρ  appearing in Eq.4 may be interpreted as a forgetting factor and stands for the 
increment of uncertainty during the model integration from 1it −  to due to model errors. 
Practically, with 

it
1ρ <  recent observational data are exponentially more weighted than old 

data. 

3.1.2 The SFEK filter 

Brasseur et al. (1999) motivated by the fact that most of the error estimation in SEEK filter is 
reduced immediately after the first correction, proposed to keep the initial correction basis of 
the filter fixed in time. Thus in this implementation called the singular fixed extended Kalman 
filter (SFEK) the correction basis of the filter remains constant in time and equal to the initial 
EOF basis . This approximation can be further justified by the fact that the state of the 
ocean evolves very slowly.  

0L

SFEK operates in two stages just like the SEEK filter but Eq.5 is not used. This drastically 
reduces the computational cost of the filter. However, the performance of the SFEK filter 
depends strongly on how well the model’s variability is described by the initial EOF correction 
basis. 
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Forecast Stage 

The model is used to compute the forecast state fX at time initialized from the analysis 

state  available at time : 
it

aX 1it −

( )1 1( ) , ( )f a
i i i iX t M t t X t− −=   (7) 

Correction Stage 

The analysis state  at time is estimated as: aX it

( ) ( ) ( )a f o f
i i i i i iX t X t K Y H X t⎡ ⎤= + −⎣ ⎦   (8) 

where the Kalman gain matrix  is given by iK
1

0 0
T T

i i i iK L U L R−= Η   (9) 

and 
1 1 1

1 0 0 0T T
i i i i iU U L R Lρ ρ− − −

−= + Η Η < 1<

0
T

i

    (10) 

 

As can been seen by Eq.10, the projection of the error modes onto the error sub-space ( ) 
evolves with the internal statistics of the filter. Thus although the error sub-space remains 
fixed in time the analysis error covariance matrix  is not steady. 

iU

0
a

iP L U L=

Additionally, a third method, the interpolated ensemble-based variant of the SEEK filter, 
called SEIK filter (Hoteit et al., 2002) was implemented into the model and tested. 

3.1.3 Initialisation of the Filters 

The SEEK/SFEK filters are initialized from an analysis state vector 0( )aX t and an initial error 

covariance matrix . The latter is estimated using an ensemble of sampled model states 

 extracted from a reference simulation. If 
0
aP

1 2, ,....., nX X X X is the ensemble mean, the 

ensemble covariance matrix  is given by 0P

0
1 TP
n

= ΧΧ   (11) 

where 1 ,....., nX X X X⎡ ⎤= − −⎣ ⎦Χ  

The EOFs of the ensemble are the eigenvectors of the covariance matrix  denoted as 
and ordered according to their eigenvalues 

0P

1 2 1, ,... nS S S − 1 2 ....λ λ≥ ≥  
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Then the initial error covariance matrix can be approximated by selecting only the first 

dominant EOFs which then determine the structure of the error sub-space at the initial r
time: 

0  (12) 

where 

0 0 0
a TP L U L=

[ ]0 1,..., rL S S=  and ( )0 1,..., rU diag λ λ=  

Such a procedure for the approximation of the initial error covariance matrix assumes that 
the covariance of the oceanic variability can be used as a proxy for the initial error 
covariance. Moreover it is assumed that the model variability is identical to the real ocean 
variability. 

3.1.4 Filter Implementation into the Princeton Ocean Model 

odel (POM) 

 xam

The SEEK/SFEK filter has already been applied with success to the Miami Isopycnic 
Coordinate Ocean Model (Brasseur et al., 1999; Brusdal et al., 2003) to the OPA model 
(Parent et al., 2003) and to the ERSEM ecosystem model (Triantafyllou et al., 2003). This is 
the first time that an attempt is made to apply the filter to the Princeton Ocean M
which is the core of the Aegean Sea hydrodynamic model (Korres et al., 2002)  

POM is a free surface primitive equations general circulation model using curvilinear 
orthogonal horizontal coordinates and a sigma layers system in the vertical. It uses two sub-
models for the computation of the eddy mixing (second order turbulence closure scheme) 
and horizontal non-linear viscosity. It also uses a time splitting technique for the external 
(barotropic) and internal (baroclinic) modes. POM has been extensively described in the 
literature (see for e ple Blumberg and Mellor, 1985, 1987). Potential temperature T , 
salinity S , velocity ,U V , free surface elevation ζ , tu

rgy times the turbulence length scale consist the prognostic variables 

anean basin forced with monthly climatological momentum, heat and freshwater 

 filter algorithm consists o
, , , , ,

rbulent kinetic energy 2q and turbulent 
kinetic ene 2q l of the 
model. 

In order to validate the performance of the filter twin experiments were carried out using a ¼ 
× ¼ horizontal resolution – 25 sigma levels implementation of POM model into the 
Mediterr
fluxes.  

The model state vector entering the f all prognostic variables of the 
model at each sea grid point, i.e. , 2 2X Tζ S U V q q l⎡ ⎤= ⎣ ⎦ . For this particular application 

nd the horizontal/vertical viscosity/diffusivity 

the dimension of the state vector is ~6×105. 

As the SEEK/SFEK filter is a sequential algorithm, the assimilation proceeds through 
successive re-initializations of the model at each analysis step. Taking into account that POM 
is using a leap-frog temporal scheme, we have implemented an Euler time step in order to 
restart the model at each assimilation step. Moreover after the model state vector has been 
updated by the filter, the density field a
coefficients are recalculated for consistency. 

The model initialized from middle-of-spring MODB-MED4 hydrological characteristics and 
zero velocities, has first been spun up for 15 years in order to reach a statistically steady 
seasonal cycle. An integration of 4 years was then performed in order to generate an 
ensemble of model states sampled every 2 days of model integration. Finally, restarting the 
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model at the end of year 19 and doing a further integration of 2 years, pseudo-observations 
of sea surface elevation were extracted every 5 days.  

dere renc  run ed sim

riance explained by the number of 

servation operator is a bilinear interpolation of 
the model grid to the observation grid. Based upon sensitivity studies an optimal value for the 
forgetting factor was found to be equal to 0.8. 
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The ensemble of 720 model states sampled during the 4-year period was EOF decomposed 
in order to estimate the approximate error covariance matrix needed for the initialization of 
the assimilation scheme. Since the variables of the state vector are of different nature, each 
state variable was normalized by its standard deviation before the EOF analysis was 
conducted. In Figure 3-1 we show the percentage of va
retained EOFs for the first eighty of them. By truncating the EOF series to the first 20 modes 
almost 94% of the total ensemble variance is explained.  

Assimilation experiments are initialized from an early-winter state extracted during the 16th 
year of model integration. Free surface elevation data at a spatial resolution of 1 deg 
extracted from the “true” run of the model are assimilated every 5 days using either the SFEK 
of the SEEK filter with an error sub-space of rank 20. The observation error matrix is 
diagonal with a 2.6 cm RMS error and the ob

 

Figure 3-1: Percentage of variance explained versus number of retained EOFs. 

In order to assess the performance of the filters, we compare the misfit between the true run, 
the assimilation and the pure forecast (the pure forecast is initialized from the same state as 
the assimilation experiment). The relative error of each state variable is defined as the ratio 
between assimilation error and forecast error: 

( )
( )

1/ 22

2
ASSIMILATION TRUE

FORECAST TRUE

x x d
e

x x dV

⎡ ⎤−
⎢ ⎥=
⎢ ⎥−⎣ ⎦

∫
∫

V
 (13) 
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The relative error is evaluated according to (13) for temperature, salinity, velocity and free 
surface elevation. Relative errors smaller than unity indicate that the assimilation estimates 
are in average closer to the true run than pure predictions. 

The global relative error (i.e. the mean relative error over all model variables) for the three 
filters (SFEK/SEEK and SEIK) is shown in Figure 3-2. After 5 assimilation cycles (25 days) 
the relative error for SFEK filter has been decreased to 34%, it is relatively higher for the 
SEEK filter (39.5%) and is almost 30% for SEIK filter. SEEK and SEIK filters converge at 
approximately the same rate during the first year of model integration while SFEK filter 
shows a relatively faster convergence.  

 

Figure 3-2: Evolution of global relative error as a function of time for the SFEK, SEEK and SEIK 
filters during the assimilation period 1986-1987. 

After 50 assimilation cycles the global relative error for SFEK filter converges to a value of 
30% and stays there with small undulations until the winter of the next year. The respective 
values for SEEK and SEIK filters are 19.5% and 15%. Overall, SEEK and SEIK filters were 
found to provide a reasonably good analysis for all model variables of the state vector and 
even for the fast evolving ones like the SSH. On the other hand, in these experiments the 
SFEK filter was found to provide an acceptable level of performance considering its time-
invariance assumption of the correction basis. 
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3.2 In the Proudman Oceanographic Laboratory Coastal Ocean 
Modelling System (POLCOMS) for the Irish Sea 

Two variants of the Kalman Filter are coded into POLCOMS: 1) a simplified Kalman 
Filter (Annan and Hargreaves, 1999) to assimilate sea surface properties, and, 2) the 
Ensemble Kalman Filter (Evensen, 1994, 2003, 2004) to assimilate sea surface 
properties combined with available water column profiles. Both these schemes are 
capable of assimilating FerryBox-type data, i.e. irregular in space and time.  

3.2.1 A Simplified Kalman Filter (Annan and Hargreaves, 1999) 

This algorithm was used to apply a correction of the forecast temperature within the mixed 
layer by weighting the difference between the observed Sea Surface Temperature (SST) and 
the model forecast SST. The weighting factor is a balance between the confidence attributed 
to both the data and the model forecast. This is expressed in equation (a), where the 
analysed temperature, , at the grid points i, j, k at time-step l, is expressed as the 

sum of the corresponding forecast temperature, , plus a correction given by the 

product of the model-to-observation difference and the Kalman gain : 

),,( kjit a
l

),,( kjit f
l

),,( kjilΚ

 = [ ] (a) ),,( kjit a
l ),,(),,( kjikjit f

l Κ+ ),(),( jisstjisst f
l

o
l −

In the present version of the algorithm, the correction operates vertically within the diagnosed 
Mixed Layer (ML). This is justified by the following hypotheses:  

i) It is supposed that errors in the model upper thermal structure are mainly due to 
inaccuracies in the heat fluxes. Details on the estimation of model error can be 
found in Annan and Hargreaves (1999). 

ii) The time-scale of error propagation across the horizontal grid due to residual 
horizontal currents is supposed to be longer than that associated to vertical 
mixing. 

iii) The turbulent kinetic energy is supposed close to a quasi-equilibrium state and 
negligible mixing is assumed across the thermocline. Temperature within the 
mixed layer can therefore be adjusted without modifying the position of the 
thermocline. 

At observation times, observations are read in and interpolated onto the model grid. The 
difference between observations and forecast is computed for every sea point, as well as the 
weighting factor for the correction. The analyzed temperature is then produced down the 
diagnosed mixed layer. [The mixed layer depth (MLD) is diagnosed as the depth (starting 
from the surface) at which the turbulent kinetic energy becomes weaker than a fixed 
threshold. This threshold has been set to 0.001 m2s-1] 

As this algorithm corrects only the forecast for those grid-points for which observations are 
available, error must be bound to avoid unrealistic values for points where no assimilation 
takes place. A modification was therefore introduced to this algorithm to set a saturation 
value for the forecast error variance.  
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The code can run on parallel as well as vector machines and be fitted into different codes, 
using different SST data sets. It was first tested on a Linux Box in a 12 km setup of the Irish 
Sea, to assimilate 9 km resolution AVHRR SST observations. Results showed an 
improvement of the thermal representation in the upper layers of the water column. A second 
set of experiments involving a 1.8 km Irish Sea setup were then run through MPI to 
assimilate 9 km and 2 km resolution satellite SST products respectively. Results are 
presented in Andreu-Burillo et al. (2005). 

3.2.2 The Ensemble Kalman Filter (Evensen, 1994 and 2004) 

The EnKF is a Monte Carlo method that aims at sampling the evolution of the probability 
density function (pdf) of the model state (Evensen, 1994, JGR). First, a set of initial 
conditions is built to obtain an a priori ensemble. The mean of this ensemble must be equal 
to a known first guess of the corresponding state of the system and its variance represents 
the uncertainty associated to that first guess. The ensemble is then run forward in time under 
the effect of forcing and model noises. These can be parameterized as stochastic 
perturbations with or without spatio-temporal coherence, added to the first-guess forcing 
fields or model parameters that are supposed to mostly account for forecast errors. At each 
model time-step, the best estimate of the true state of the system is provided by the mean of 
the ensemble: 

∑
=

=
m

i
ixx m 1

1
. 

The error covariances can then be obtained through: 

xxxxP −−= , . 

The EnKF does not need to calculate the evolution of the error covariance matrix, as the 
necessary statistical information for the analysis is carried by the ensemble itself. 

Our implementation of the EnKF is based on that proposed by Evensen (2003) and corrected 
in Evensen (2004). The code was generated by adapting the available routines on the 
website http://www.nersc.no/~geir/EnKF/Code/ for use with POLCOMS. At present, the 
forecast/analysis sequence is run through a shell script. The ensemble forecast is run 
sequentially, each member running with model domain decomposition. 

Simulations for a high-resolution model setup were conducted in an Irish Sea model domain 
with a 1.8 km horizontal grid (301 x 173 gridpoints) and 32 vertical σ–levels. 

Initial Conditions 

An ensemble of 10 different initial conditions was obtained by adding a set of perturbations to 
the first guess. The perturbations were obtained by sampling (Evensen, 2004) daily model 
output, from the reference simulation, corresponding to the season during which the 
ensemble was to be started (e.g. for an ensemble simulation starting in March, the model 
output used to obtain the initial perturbations was that from January to April of the reference 
simulation). 
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Parameterization of Model Error 

Model error was parameterized by imposing Gaussian noise onto those components of the 
system that were supposed to be main sources of background error. 

Wind was perturbed by adding geostrophic perturbations to the corresponding reference 
field. The perturbations had a decorrelation time scale of 6 hours and a horizontal 
decorrelation scale of approximately 500 km. This length scale was estimated from that of 
the geopotential height fields in ECMWF analyses. 

In order to account for possible errors in the turbulent closure scheme, two empirical 
constants were perturbed: von Karman’s constant (κ) and the mixing length limit (ℓ). The 
actual perturbed values were different for each member but held constant throughout its 
integration in time. 

Finally, cloud cover was perturbed with a horizontal decorrelation scale of approximately 200 
km. 

Model Setup and Experiments Protocol 

A first experiment was performed running an ensemble of 10 members. The ensemble was 
started on 01/03/2001 and was run in forecast mode under the effect of wind and turbulent 
parameter errors. The ensemble variance of the SST field after two months of integration 
was concentrated on the deeper areas of the domain, presenting very fine scale structure. 
The ensemble was then run from that set of states for two additional months (starting 
01/05/2001) with the additional contribution to model error parameterization of cloud cover 
perturbations. This extended the ensemble SST variance across the domain, its spatial 
structure distinguishing areas of the basin with different physical mechanisms (Figure 3-3(b)). 
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Figure 3-3: Ensemble forecast standard deviation of SST (° C) for a 10 member ensemble on 

01/06/2001 (a) after three months of integration submitted to noise in the forcing wind 
field and the turbulent parameters, (b) with the contribution of errors in the cloud cover 
from the beginning of the third month. Note the difference in scales. 
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Assimilation of 2 km satellite SST products started on 01/07/2001, taking place at 0 hrs. 
every night. It was found that the ensemble spread decreased very quickly after assimilation 
was activated. In the analysis step, the correction introduced by the observations produced a 
decrease in the ensemble spread which is consistent with the EnKF formulation. However, 
model error parameterization did not succeed to build up enough forecast error to enable 
efficient assimilation of observations in subsequent analyses.  

 

After a certain number of analysis-forecast cycles, the ensemble tended to coalesce. The 
time scales of forecast error build up revealed longer than the time scales on which we 
assimilated (Figure 3-4). This could be due to an insufficient model error parameterization, 
but it also brings up the question of whether we can actually account for most of model error 
using model sensitivity. This question remains open and will be subject to further 
investigation. In the mean time, an Ensemble Optimal Interpolation scheme (EnOI) scheme 
has been implemented3, in order to assure efficient assimilation of observations. This 
scheme updates a single forecast state using an analysis scheme fed by a stationary 
ensemble, used to estimate the error covariances. This ensemble can change depending on 
the period or season. 
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Figure 3-4: Ensemble standard deviation of forecast SST from 01/07/2001, first day of 

assimilation, and subsequent days. Assimilation takes place on a daily basis. Figures 
show the spread of the background ensemble before assimilation for each day and 
how the ensemble tends to coalesce. Scale is 0.2-1.1° C for all figures. 

 

 

 

 

 

 

                                                 
3 This was done with the help of G. Evensen (Norsk Hydro), L. Bertino (NERSC) and François 

Counillon (NERSC). 
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