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Abstract: 

 

The influence of Y content on the hot tearing susceptibility (HTS) of binary Mg-Y alloys 
has been predicted using thermodynamic calculations based on Clyne and Davies model. 
The calculated results are compared with experimental results determined using a 
constrained rod casting (CRC) apparatus with a load cell and data acquisition system. 
Both thermodynamic calculations and experimental measurements indicate that the hot 
tearing susceptibility as a function of Y content follows the “λ ” shape. The experimental 
results show that HTS first increases with increase in Y content, reaches the maximum at 
about 0.9 wt.% Y and then decreases with further increase the Y content. The maximum 
susceptibility observed in Mg-0.9 wt.% Y alloy is attributed to its coarsened columnar 
microstructure, large solidification range and small amount of eutectic at the time of hot 
tearing. The initiation of hot cracks is monitored during CRC experiments. It corresponds 
to a drop in load increment on the force curves. The critical solid fractions at which the 
hot cracks are initiated are in the range from 0.9 to 0.99. It is also found that it decreases 
with increasing the content of Y. The hot cracks propagate along the dendritic or grain 
boundaries through the interdendritic separation or tearing of interconnected dendrites. 
Some of the formed cracks are possible to be healed by the subsequent refilling of the 
remained liquids. 
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1. Introduction 

    Hot tearing (or hot cracking) is known as one of the most fatal solidification defects 

commonly encountered during casting. Previous studies have revealed that this 

phenomenon occurs in the mushy zone of a freezing alloy and the solid phase of casting 

is formed by a continuous network of grains. Although it has been investigated for 

decades, the understanding still stands at a qualitative stage [1-2]. The factors dominating 

the formation and susceptibility of hot tears include alloying elements, freezing range, 

amount of eutectic phases and solidification rate [3]. So far, the investigations on hot 

tearing are mainly focused on the steels and aluminium alloys [4-5]. A comprehensive 

review on hot cracking of aluminum alloys has been published by Eskin et al. [2]. In 

contrast, only few works have been reported on the hot tearing of Mg alloys.  

 

    Investigations on the castability of Mg alloys indicated that castings are often prone to 

hot tearing defects. The selected alloys for the investigations of hot tearing are mainly 

Mg-Al series [6-11]. Wang et al. [12] used a quantifying method to monitor the 

temperature at which the hot tearing occurs. They concluded that the occurrence of 

eutectic induces the hot tearing of AZ91 alloy. After the addition of rare earths (cerium-

rich mischmetal) to AZ91 alloy, the hot tearing susceptibility reduces [13]. Cao et al. [6-

7] also surveyed the effects of alloying elements such as Ca and Sr on the hot tearing 

susceptibility of Mg-Al alloys. Their results demonstrated that these two alloying 

elements improve the castability and decrease the hot tearing susceptibility of Mg-Al 

alloys. Recently, Zhou et al. [14-15] used thermodynamic calculations and a quantitative 

method to evaluate the hot tearing of binary Mg-Zn alloys, which are the base alloys to 

be used for the development of wrought Mg alloys such as Mg-Zn-RE (rare earths). They 

found that the hot tearing of these alloys is largely influenced by both the content of Zn 

and mold temperature. The influence of Zn content on the hot tearing susceptibility 

follows the “λ ” shape. It is also found that the addition of Y to Mg-Zn alloys alleviate 

the hot tearing [16]. The beneficial effects are attributed to the facts that Y addition 

increases the solidus temperature, shorten the terminal solidification path and reduce the 

terminal freezing range. Besides the investigations on the influences of respective 

chemical compositions on HTS, the effects of casting conditions such as the effect of 



cooling rate on HTS were also sometimes explored in these above mentioned works such 

as the effect of cooling rate [14-15]. 

 

    Considering the fact that the Y element plays a very important role in modifying the 

properties of Mg alloys [17-19], the investigations on the effects of Y on HTS of Mg 

alloys should be very interesting. The addition of Y not only improves the mechanical 

properties but also increases the corrosion resistance [20]. Mg-Zn-Y alloys have recently 

been reckoned as one of the most promising wrought Mg alloys for practical applications. 

However, the effects of Y on the castability of Mg alloys such as hot tearing is not yet 

well understood. The related mechanisms of hot tearing in Mg alloys containing Y still 

remain somewhat unclear. Therefore, the present work investigates the hot tearing 

susceptibility of binary Mg-Y alloys, and the influences of Y content on HTS of Mg alloy 

will be discussed. 

2. Prediction of crack susceptibility coefficient based on Clyne and 

Davies model  

    The hot tearing criterion proposed by Clyne and Davies is based on the assumption that 

the liquid feeding can not accommodation the strains developed during solidification [21-

22]. The last stage of freezing is considered as a critical stage to hot tearing. In their 

model, a cracking susceptibility coefficient (CSC) was proposed, which is defined by the 

ratio of Vt , the vulnerable time period where the hot tearing may develop, and Rt , the 

time available for the stress relief process where both the mass feeding and liquid feeding 

occur (Fig.1). The CSC reads: 
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Where 99.0t  is the time when the volume fraction of solid, Sf  is 0.99, 9.0t  is the time 

when Sf  is 0.9 and 4.0t  is the time when Sf  is 0.4. The larger CSC value means the 

higher tendency of hot tearing. 

 



    As shown in the above equation (1) and Fig.1, in order to calculate the CSC, the 

variant fractional time at a specified solid fraction or liquid fraction should be known. 

This can be done by the following steps: 

1) With using Scheil’s modeling, the volume fraction of solid phase as a function of 

temperature is first calculated using thermodynamic software Pandat and PanMg 8.0 

thermodynamic database. In Clyne and Davies model, the Scheil’s assumption was 

considered to be reasonable for the solidification conditions encountered during 

castings. 

2) The second step is the determination of temperature profile as a function of time, i.e. 

the cooling curve.  

 

    In order to predict the variation of the cracking susceptibility coefficient with alloy 

composition, it is necessary to design a series of alloys with different Y contents. The 

range of Y content considered is from 0.2 to 8.0 wt.% which is less than its maximum 

solubility in Mg at the eutectic temperature [23-24]. The volume fraction of solid phase 

as a function of temperature is shown in Fig.2. The content of Y has a large influence on 

the freezing range and the melting point. Above 610 to 640 °C the solid fraction reduces 

quickly, and below 610 to 640 °C it changes slowly. The specified temperature above 

which the solid fraction changes quickly closely depends on the content of Y. The 

melting points of Mg-Y alloys change from 650 to 632 °C when the content of Y 

increases from 0.2 to 8.0 wt.%.  

 

    In Clyne and Davies investigations, for calculating cooling curve, constant partition 

coefficient and liquidus slope were used [21-22]. Also it was assumed that both the 

liquidus and solidus were approximately linear. Actually, this may not be true. The 

liquidus and solidus lines in the phase diagram are not linear. In order to improve the 

accuracy of calculated results, in the present calculation the partition coefficient and 

liquidus slope were calculated using PanEngine module in Pandat software based on 

thermodynamic database PanMg 8.0. PanEngine is a collection of C++ classes, which 

performs some related thermodynamic and equilibrium calculations [25]. The calculated 

partition coefficient and liquidus slope of the Mg-Y alloy is shown in Fig.3, which clearly 



indicates that both the partition coefficient k  and liquidus slope Lm  vary with 

temperatures. The value of the partition coefficient increases from 0.19 to 0.27 as the 

temperature decreases from 650 to 632 °C. The liquidus slope also changes from 6.8 to 

8.5 in the temperature range from 650 to 632 °C. 

 

    The cooling curves could be estimated using three different modes: mode 1 with a 

constant cooling rate, =dtdT / constant; mode 2 with a constant heat flow, 

=dtdQ / constant and mode 3 with a heat flow proportional to the square root of time, 
2/1/ −∝ tdtdQ  [21]. The typical calculated cooling curves for Mg-1.5 wt.% Y alloy under 

these three cooling conditions are shown in Fig.4. After comparing the experimental 

results, the calculated results using the mode 3 are found close to the realistic situation. 

Thus, all CSC values are calculated using the mode 3 cooling condition in the present 

investigation. Fig.5 shows the calculated CSC value as a function of the content of Y for 

the binary Mg-Y alloys. The curve follows the typical “λ ” shape. The hot tearing 

susceptibility first increases with the content of Y, reaches a maximum at 1~2 wt.% Y 

and then decreases with further increasing the content of Y.  

3. Experiments 

3.1 Melting 

    Binary Mg alloys containing 0.2, 0.9, 1.5 and 4 wt.% Y were prepared for the present 

study. 350 g of Mg was molten in a mild steel crucible under a protective gas mixture of 

high pure Ar+0.2% SF6. Pure Y was added to the melt at 700 °C. After stirring the 

molten alloys at 80 rpm for 2 min. and keeping for 5 min. at pouring temperature 750 °C, 

the molten alloys were cast into a constraint rod casting (CRC) mold, which was coated 

with a thin layer of boron nitride. The mold was preheated to a temperature ( moldT ) of 250 

°C. The castings were extracted from the mold after solidification and then examined for 

cracks. Each test was repeated for 3 times.  



3.2 Hot tearing tests 

    The previously developed setups include ring type testing, cold finger testing, 

backbone mold testing and constrained rod testing, and so on [6, 16, 26-27], normally 

measure the hot tearing susceptibility in a qualitative way. In order to assess the hot 

tearing susceptibility quantitatively, a hot tearing setup based on the previously 

developed constrained rod testing was developed (Fig.6). Different from the previous 

setups, a load cell was attached in the present setup so that the evolution of contraction 

force during solidification can be recorded, which is quite an important information to 

show when the hot tearing initiates and how it propagates. All these information is very 

important to understand the mechanism of hot tearing. 

 

    The developed system consisted of a constrained rod casting (CRC) mold, a 

contraction force measurement system with a load cell, a data logging unit and a data 

recording program. The hot tears always occurred at the junction of the sprue and the 

horizontal bar. The mold consisted of two parts: vertical sprue and horizontal circular rod 

with a length of 148 mm. The sprue was open to the air at the top and connected to the 

rod portion of the mold near the bottom. The diameter of the rod portion of the mold was 

12.5 mm at sprue end and 10 mm at the opposite end. This slight taper was provided to 

reduce friction between the mold and casting. At the opposite end of the sprue, a 53 mm 

long steel stud with a diameter of 6 mm was inserted into the rod portion of the mold and 

connected to a load cell (max. 2 kN) as illustrated (Fig.6). This steel stud provided a 

partial constraint to the movement of casting in the mold during solidification. The 

developed force was measured by the load cell. The force, mold temperatures at different 

positions and temperature of the solidifying casting at the hot spot area were recorded. 

The force curve (force vs. time) and cooling curve (temperature vs. time) were used for 

analyzing the hot tearing. 

3.3 Microstructure analysis 

    The grain morphology and cracks were investigated on the cross section of the rod near 

the sprue-rod junction. In order to understand the crack propagation, the microstructures 

on the longitudinal cross section of the rod at the sprue-rod junction were also observed. 



After polished the samples were chemically etched in a solution of 8 g picric acid, 5 ml 

acetic acid, 10 ml distilled water and 100 ml ethanol. They were observed using Reichert-

Jung MeF3 optical microscope. A Zeiss Ultra 55 (Carl Zeiss GmbH, Oberkochen, 

Germany) Scanning Electron Microscope (SEM) equipped with Electron Dispersive 

Spectrometer (EDS) was used to study the fracture surfaces and also the crack 

propagations. 

3.4 Hot tearing volume measurement 

    The hot tearing susceptibility was usually evaluated by the length and width of open 

cracks observed on the surfaces of rods [6, 16]. The shortness of this method is that the 

closed cracks inside the rods cannot be counted. Thus, the measured values are not so 

accurate. In the present paper, the hot tearing susceptibility is characterized by measuring 

the volume of cracks using 3D X-ray tomography, which can detect not only the surface 

cracks but also the inside cracks. The results obtained by this method are much more 

believable compared with the previous methods. 

 

    X-ray micro-tomography is a non-destructive, three-dimensional characterization 

method that has been applied to a number of fields within materials science [28-29]. The 

technique allows imaging the internal microstructural features by measuring variations in 

intensity of a transmitted X-ray beam through a rotating specimen. In the present study, 

the hot tearing susceptibility was evaluated using X-ray tomography in an X-ray tube-

based high resolution tomography (nanotom® s - phoenix, GE Measurement & Control 

Solutions, Germany). The 3D volume reconstruction was made from the 2D projections 

(with a filtered back projection algorithm) using datos|x2.0 reconstruction software 

(phoenix, GE Measurement & Control Solutions, Germany). The resolution achieved 

after reconstruction of the volume in the region of interest was of about 20 µm. Further 

data processing, including normalization and alignment of the 3D-data sets, the 

segmentation and characterization of the crack volume was applied using the software 

IDL 8.1 (Exelis Visual Information Solutions, Inc.). Cylindrical samples of diameter 

approximately 12.5 mm machined from the CRC mould castings, as shown in Fig.7, were 



used for the tomography measurements. The average crack volume of minimum two 

samples for each alloy measured is considered.  

4. Results  

4.1 Hot tearing curves 

    Fig.8 shows the experimental hot tearing curves of Mg-Y alloys with different contents 

of Y. The detailed characterization of hot tearing curves, including the definition of hot 

tearing initiation temperature (Ti) and crack propagation can be found elsewhere [14-15]. 

On all hot tearing curves, a slight reduction in the load was observed at the beginning of 

pouring. This is possibly due to the molten melt pressure exerted on the stud that 

connected to the load cell as the melt entered from sprue into the rod relatively fast, due 

to the sudden change in the cross sections, and hit the stud.  

 

    The load evolutions shown by these obtained experimental curves are generally 

similar, but some differences are found at the beginning. With the solidification 

proceeding, the load increases, reaches to a maximum and then decrease or becomes 

stable for a while and increases again. This force drop indicates the formation of the hot 

tearing in the casting. The temperature corresponding to the beginning of the force drop 

is considered as an initiation temperature of hot tear. The different alloys have different 

hot tearing initiation temperatures. For Mg-0.2 wt.% Y alloy, the hot crack initiated at 

605.8 °C, which corresponds to a solid fraction of 0.997 (Fig.8 (a)). For Mg-0.9 wt.% Y 

alloy, the hot crack initiated at 598 °C at which the solid fraction is 0.989 (Fig.8 (b)). In 

addition, the force of Mg-0.9 wt.% Y alloy is dropping for a long time, it means the hot 

cracks are propagating larger than other alloys. Normally, the sharper and longer the 

force drop is, the larger the crack size is. Unlike aforementioned two alloys, the force 

curve of Mg-1.5 wt.% Y, does not show any force drop. However, the analysis of the 

castings (shown in the next section) indicates that hot tearing occurred in this alloy too. In 

this situation, according to Huang et al [30], the onset of hot tearing can be identified by 

locating the point at which the load as a function of time changes from linear increment 

to non-linear increment in the force curve. Hence the initiation temperature of hot tearing 

for Mg-1.5 wt.% Y alloy is found to be 616.6 °C . This temperature corresponds to a 



solid fraction of 0.956, which is very close to the well established knowledge that hot 

tearing normally occurs at the latest stage of solidification when an approximate 5% 

liquid is left [1]. Similar way, the initiation temperature of hot tearing for Mg-4 wt.% Y 

can also be calculated using the above mentioned procedure, which shows that the 

corresponding solid fraction is 0.918. 

4.2 Microstructural observations 

4.2.1 As-cast 

    Fig.9 shows the optical micrographs of binary Mg-Y alloys taken near the junction of 

the sprue and the horizontal rod. From the microstructure, it can be seen that with 

increasing the content of Y the microstructure is changed from columnar grains to 

equiaxed grains. However, Mg-0.9 wt.% Y alloy exhibits columnar grain and largest 

grain size among all the alloys. Equiaxed grains are dominant in Mg-4 wt.% Y alloy. 

4.2.2 Observations of hot cracks 

    Fig.10 shows the macro view of the cracks on the surfaces of the restrained rods for 

binary Mg-Y alloy castings. It can be seen that the compositions of alloys largely 

influenced the hot cracks. No macro-cracks are observed near the junctions of Mg-0.2 

wt.% Y and Mg-4 wt.% Y alloys. In contrast, the macro-cracks are clearly observed near 

the junctions of Mg-0.9 wt.% Y and Mg-1.5 wt.% Y alloys. The large open crack in the 

former alloy casting than that of the latter, indicates that Mg-0.9 wt.% Y has the largest 

hot tearing tendency among all these four alloys. 

 

    Fig.11 shows the X-ray tomography photographs of the hot cracks located in the centre 

of rods (2D centre slice). Very few cracks are observed in Mg-0.2 wt.% Y and Mg-4 

wt.% Y alloys. The alloy with 0.9 wt.% Y has a large volume of  crack. In this sample, 

the initiation of hot cracks at the junctions can clearly be traced down towards the center 

of the rod. Compared with Mg-0.9 wt.% Y alloy, the amount of cracks decreased in Mg-

1.5 wt.% Y alloy. In addition, in alloy with the content of 4 wt.% Y, few white river 

patterns are noticed. This indicates the presence of high X-ray observed materials in that 

region which is probably the high content of Y. It is noticed that these white river 



patterns are normally observed near the main cracks. In addition, in all rods the most of 

hot cracks locate near the surface. In contrast, near the centre of rod the hot cracks are 

hardly found. 

 

    Fig.12 shows SEM micrographs of hot cracks on the longitudinal surfaces. It can be 

seen that all hot cracks propagate along the dendritic or grain boundaries. The main 

cracks normally initiates at sprue-rod junction. In front of these main cracks, phases with 

different contrast are observed. At high magnifications, it can be seen that they are 

second phases (Fig.12). EDS analysis indicates that these regions are Y rich (Fig.13). In 

Mg-4 wt.% Y alloys, the content of Y in the white region can reach to 32.43 wt.%. 

Another interesting phenomenon is that, with increasing the content of Y the amount of 

white river patterns increases. These river patterns can be seen clearly in Fig.13, which 

contains eutectic phases.  

 

    Fig.14 shows the fracture surfaces at the hot tear regions of Mg-0.9 wt.% Y and Mg-

1.5 wt.% Y alloys. The morphology of the fracture surface showing the typical features 

of hot tearing, i.e. interdendritic and intergranular fractures. Normally the features of hot 

crack surfaces are smooth. Besides the smooth surfaces caused by the interdendritic 

separations, the transgranular fractures are also observed. These tearing fractures are 

caused by the subsequent propagation of hot cracks. Interestingly, in some areas, shown 

in Fig.14, a thin layer of material is observed on the fracture surface with a fluvial 

pattern. The EDS analysis result indicates that these layers are rich in Y content. This 

demonstrates that the hot tearing is an interdendritic separation, which happens when 

there still exists a liquid layers with solute segregation at the dendritic boundaries. 

4.3 Quantitative measurement of crack volume 

    Fig.15 shows the total crack volume measured by X-ray micro-tomography technique. 

The total crack volume depends on the content of Y. It increases with the content of Y, 

reaches to a maximum at about 0.9 wt.% Y and then reduces with further increasing the 

content of Y. The maximum volume of hot cracks measured for Mg-0.9 wt.% Y is about 

58.1 mm3. 



5 Discussion 

5.1 Comparison of thermodynamic calculations with experimental results 

    From Fig.5 and Fig.15, it can be concluded that the thermodynamic calculation results 

are quite in agreement with that obtained by experimental tests. Both of them indicate 

that the hot tearing susceptibility changes with Y content and follows “λ ” shape even 

though the used parameters to evaluate the hot tearing susceptibility in both cases are 

different. For thermodynamic calculations, the parameter (see Equation 1) proposed by 

Clyne and Davies was used to estimate the hot tearing susceptibility [22]. While in the 

experiments the parameter “crack volume” was directly used to evaluate the hot tearing 

susceptibility. Indeed, these two parameters have no direct relations. However, they are 

practically useful to evaluate how the composition of primary alloying element influences 

the hot tearing susceptibility of alloys. Especially for the parameter used in 

thermodynamic calculations, it would be quite useful during alloy design when the 

experimental measurements of hot tearing susceptibility become difficult. Based on the 

present results, it can be concluded that it is reasonable to use the Clyne and Davies 

model to evaluate the influence of compositions on the hot tearing susceptibility. 

 

    Although Fig.5 and Fig.15 show similar shapes of the hot tearing susceptibility curves 

and indicate almost the same peak susceptibility (at 1 to 1.5 wt.% Y), a discrepancy 

between them still exists (Fig.16), i.e. the shape of the curve after the peak susceptibility. 

The crack volume reduces sharply after the peak in the experimental work whereas CSC 

curve reduces gradually in the model. This discrepancy is caused by the limitations of 

Clyne and Davies model. In their model, the definition of vulnerable period during which 

the hot tearing is easy to occur is not defined so accurately. They defined this period 

( 99.09.0 << sf ) only based on the previous experimental results. In some case, the hot 

tearing may happen with a liquid fraction of more than 0.1 [10, 15, 22]. In addition, 

Clyne and Davies model used a fixed equation to estimate the cooling rate which was 

simplified based on the situation of heat flow [22]. They did not incorporate the influence 

of mold temperature in their equation. Even so, Clyne and Davies model is still useful to 



have first hand information on the influence of the alloy compositions on the hot tearing 

of an alloy.  

5.2 Influence of the Y content on hot tearing susceptibility 

    In the present investigations, the hot tearing susceptibility of Mg-Y alloys is influenced 

by the content of Y in two ways: solidification range and microstructure. Normally, the 

hot tearing susceptibility is proportional to the solidification range, especially the 

vulnerable solidification region from the solid fraction 0.9 to 0.99 [22], which can be 

defined as follows:  

99.09.0 TTT −=Δ                                                   (2) 

Where TΔ  is the temperature difference between the temperature at a solid fraction of 

0.9 ( 9.0T ) and 0.99 ( 99.0T ). The large value of TΔ  can lead to increase the hot tearing 

susceptibility. Table 1 lists the TΔ  values obtained by thermodynamics calculations. As 

shown in Table 1, the vulnerable solidification region depends on the composition of Mg-

Y alloys. TΔ  increases with the content of Y to 1.5 wt.%, and then decreases with further 

increasing the content of Y more than 4 wt.%. Both Mg-0.9 wt.% Y and Mg-1.5 wt.% Y 

alloys have a lager freezing range than other two alloys. The time spending in the 

vulnerable solidification zone is much longer, demonstrating that the possibility of hot 

cracking initiation is larger. This result is also in agreement with that obtained by 

experimental measurements, which shown that Mg-0.9 wt.% Y and Mg-1.5 wt.% Y 

alloys have more cracks.  

 

    The addition of Y in Mg affects the grain morphology, which is considered one of the 

most important factors to influence the initiation of hot tearing [31-32]. The grains with a 

large size and columnar structure promote easy initiation and propagation of hot crack. In 

contrast, a fine grain size and equiaxed structure helps to avoid the initiation of hot 

tearing. The fine microstructure is not only beneficial for accommodating the local 

deformation but also for the melt to flow due to the increased amount of grain 

boundaries. Hence the possibilities of refilling the fresh hot tears by the remaining liquid 

increases and as a consequence, these hot tears are possibly healed. As shown in Fig.9, 



the grain size of Mg-0.9 wt.% Y alloy is the largest, and hence this alloy shows higher 

hot tearing susceptibility. 

 

    The amount of eutectic liquid is also regarded as one of the most important factors to 

influence the initiation of hot tearing [1-2], especially for binary alloys [33]. In Mg-Y 

alloys, the eutectic amount depends on the content of Y. Generally, the fluidity of melt 

increases with the amount of low melting point eutectic liquid. In the alloys with a high 

content of Y, the hot tearing susceptibility is low due to the large amount of eutectic 

liquid at the final stage of solidification which heals the cracks to a greater extent due to 

the high fluidity. Experimental results show that the hot tearing almost disappear when 

the content of Y is more than 4 wt.%. However, the second phases precipitated from the 

liquid above the solidus may act as nuclei for hot tearing initiation near the solidus. For 

the present investigated alloys, the influence of second phases on the hot tearing initiation 

may be neglected. The microstructure analyses confirm that second phases in these two 

alloys are very few (Fig.12 and Fig. 14). Also, for these two alloys, the solidification 

paths calculated using Scheil solidification model, indicate that the second phase 

fractions are almost near to zero (Fig.17). Even in Mg-4 wt.% Y alloy, only 2 mol% 

Mg24Y5 phase is expected to form.  

5.3 Hot crack initiation, propagation and healing 

    As aforementioned, the hot tears initiate above the solidus temperature, i.e. at the final 

stage of solidification with small amount of liquid phase remained. With the 

solidification proceeding, the nucleation starts and the nucleus grow to become a 

dendrite. When the solid becomes dominant, the dendrites are interconnected. At these 

dendritic boundaries, the remained liquid film with a lower melting temperature possibly 

covers the surface of these dendrites. In the meantime, the thermal strain and stress could 

be formed during solidification. If they increase to a critical value, the interdendritic 

separation occurs. The formed thermal stress is then released. On the hot tearing curves, 

these drops in load can be observed. Fig.19 shows the onset temperature of hot tears and 

its corresponding solid fraction as a function of the content of Y. As shown, the solid 

fraction at which hot tearing initiates decreases with increasing the content of Y. 



Recently, Gao et al. investigated the hot tearing behavior of Mg-Al-Sr alloys [7]. They 

also found that this critical solid fraction depends on the content of alloying element Al: 

with increase in Al content, it reduces.  
 

    Most of earlier investigations illustrated that the hot tearing is normally initiated at a 

remained solid fraction of about 0.95 (as aforementioned). However, with the 

improvement of theoretical modeling and experimental techniques, this value may vary 

even below 0.95 depending on the alloy and solidification conditions. The present results 

have confirmed that this value really depends on the content of Y (Fig.19). It changes 

from 0.916 to 0.997. In a recent review [2], Eskin summarized the related literature and 

indicated that this value is in the range from 0.85 to 0.95. Interestingly, Cao’s 

investigations further showed that the hot tears can be initiated even at a lower remained 

solid fraction of 0.78 [7]. Due to the fact that the solidification is a complex process, it is 

very difficult to measure this value accurately. The initiation of hot tearing is affected by 

many factors: not only the materials properties but also the casting parameters. In 

addition, even if the exact onset temperature is determined, the solid fraction 

corresponding to this temperature can not be error free as it is normally calculated using 

thermodynamic calculations. This is because the used solidification models such as 

equilibrium model or Scheil’s model to calculate the solid fraction are different from the 

real solidification situation.  

 

    After the initiation of hot tears, they propagate along the dendritic and grain boundaries 

with the assistance of thermal stress during solidification (Fig.12 and Fig.18). The 

thermal stress is further released, leading to the further drop in the load (Fig.8), which is 

clearly reflected on the hot tearing curves. As indicated by Fig.14, the propagation of hot 

cracks in Mg-0.9 wt.% Y alloy is easy and proceeds by the interdendritic separations. In 

the fracture surface, a bumpy surface covered with a smooth layer is observed, which is a 

typical trace of solidified remained liquid film. The similar situation is seen in Mg-1.5 

wt.% Y alloy. In this alloy, the hot crack still mainly propagates through interdendritic 

separations. Compared with Mg-0.9 wt.% Y alloy, the difference is that the amount of 

tears of interconnected dendrites increases in Mg-1.5 wt.% Y (Fig.18). This means that in 



this alloy the propagations of hot cracks are possibly blocked by the interconnected 

regions. This can also explain why this alloy has slightly lower hot tearing susceptibility 

than Mg-0.9 wt.% Y alloy. 

 

    As shown in Fig.11 and Fig.12, the refilling of hot cracks by the remained liquid can 

be traced. After the hot cracks occur, the regions near them have a negative pressure [10, 

34]. The negative pressure, suck back the liquid, and refilling of hot cracks may occur. 

This liquid is enriched with Y content, and hence their density is much higher than the 

average density of the alloy. This Y enriched solidified liquid is seen with white contrast 

in SEM and tomography. Refilling of hot cracks can be observed in the present four 

investigated alloys including the low Y containing alloy, Mg-0.2 wt.% Y (Fig.12). 

According to the force curve of Mg-0.2 wt.% Y (Fig.8), hot tearing should have occurred 

as the curves show a drop in load. However, the macro-observations (Fig.10) and X-ray 

tomography results (Fig.11) exhibit no hot cracks in this alloy. This inconsistence can be 

related to the early explained phenomenon “subsequent healing of hot cracks”. Indeed, 

SEM observations have confirmed the refilling and healing of hot cracks in Mg-0.2 wt.% 

Y alloy (Fig.11 (a)). It seems that the refilling and healing phenomena are easier in the 

alloys with high contents of Y (Fig.11 (d) and Fig.12 (d)). More white river-like patterns 

have been observed in Mg-4 wt.% Y alloy. In the alloys with high content of Y, the 

amount of low meting point eutectics are high. The remained liquid has a higher flow-

ability. This is why the hot cracks occurred in these alloys have a higher possibility to be 

healed. Moreover, due to the easy refilling and healing of hot cracks, no apparent drop in 

load is found on the hot tearing curve of Mg-4 wt.% Y alloy. 

6 Conclusions 
    The hot tearing susceptibility of binary Mg-Y system has been investigated by 

thermodynamic calculation and experimental methods. The conclusions are summarized 

as follow: 

(1) Both the experimental measurements and thermodynamic calculations show the 

same tendency in the variation of hot tearing susceptibility with Y content. The hot 

tearing susceptibility as a function of Y content follows “λ ” shape. The CSC first 



increases with Y content, reaches the maximum at about 1~2 wt.% Y and then decreases 

with further increasing the Y content.  

(2) When a hot crack is initiated, a drop in load increment is observed on hot tearing 

curves. Its corresponding onset temperature can then be determined. 

(3) The hot cracks are initiated at a critical solid fraction from 0.9 to 0.99. It 

decreases with increasing the content of Y. The hot cracks propagate along the dendritic 

or grain boundaries through the interdendritic separation or tearing of interconnected 

dendrites.  

(4) The initiations and propagations of hot cracks are influenced by alloy 

compositions, grain morphology and size, solidification range and amount of eutectic. 

The maximum hot tearing susceptibility is obtained in Mg-0.9 wt.% Y alloy which is due 

to its large grain size and wide solidification range and presence of small amount of 

eutectic. 

(5) The hot cracks could be healed by the subsequent refilling of remained liquids, 

and the degree of refilling depends on the amount of liquid available at the final stage of 

solidification.  
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Figure captions 

Fig. 1. Schematic diagram of liquid fraction vs. fraction time showing the calculation of 

CSC. 

Fig. 2 Solid fraction vs. temperature for the binary Mg-Y alloys calculated using non-

equilibrium (Scheil) modeling. 

Fig. 3 Partition coefficient of Y and liquidus slope in Mg-Y binary system.  

Fig. 4 Calculated cooling curves for Mg-1.5 wt.% Y alloy under three different cooling 

conditions. 

Fig. 5 Calculated CSC value as a function of the content of Y. 

Fig. 6 Schematic diagram of experimental setup, (a) complete setup, (b) CRC apparatus 

with sensor, (c) position of thermocouple for obtaining the temperature at which the hot 

crack is initiated. 

Fig. 7 Photograph showing the machined sample used for X-ray tomography study. 

Fig. 8 Typical curves of contraction force as a function of solidification time at a mold 

temperature of 250 °C: (a) Mg-0.2 wt.% Y, (b) Mg-0.9 wt.% Y, (c) Mg-1.5 wt.% Y, (d) 

Mg-4 wt.% Y. 

Fig. 9 Optical microstructures of binary Mg-Y alloys showing the grain structure: (a) Mg-

0.2 wt.% Y, (b) Mg-0.9 wt.% Y, (c) Mg-1.5 wt.% Y, (d) Mg-4 wt.% Y. 

Fig. 10 Macro view of the cracks on the surfaces of the restrained rods of binary Mg-Y 

alloys: (a) Mg-0.2 wt.% Y, (b) Mg-0.9 wt.% Y, (c) Mg-1.5 wt.% Y, (d) Mg-4 wt.% Y. 

Fig. 11 X-ray photographs of Mg-Y alloys showing crack morphologies: (a) Mg-0.2 

wt.% Y, (b) Mg-0.9 wt.% Y, (c) Mg-1.5 wt.% Y, (d) Mg-4 wt.% Y. 

Fig. 12 SEM micrographs showing the cracks near the sprue-rod junction: (a) Mg-0.2 

wt.% Y, (b) Mg-0.9 wt.% Y, (c) Mg-1.5 wt.% Y, (d) Mg-4 wt.% Y. 

Fig. 13 As-cast structure Mg-4 wt.% Y alloy. Also shown here the EDS results of point 

A: (a) SEM image, (b) magnified view of second phase, (c) EDS of point A. 

Fig. 14 SEM micrographs of hot tear surfaces of (a) Mg-0.9 wt.% Y and (b) Mg-1.5 wt.% 

Y alloys. 

Fig. 15 Total crack volume measured by X-ray micro-tomography for Mg-Y alloys. 

Fig. 16 Comparison of predicted CSC and experimental hot tearing tendency for Mg-Y 

binary alloys. 



Fig. 17 Solidification processes of (a) Mg-0.9 wt.% Y and (b) Mg-4 wt.% Y, which are 

calculated using Scheil’s model. 

Fig. 18 Bridging of hot cracks at 250 °C mold temperature: (a) Mg-0.9 wt.% Y, (b) Mg-

1.5 wt.% Y. 

Fig. 19 Initiation temperature of hot tearing and its corresponding solid fraction as a 

function of the Y content. 

 

Table caption 

Table 1 Hot tearing features and predicted vulnerable temperature ranges of Mg-Y alloys.  
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Fig. 11 X-ray photographs of Mg-Y alloys showing crack morphologies: (a) Mg-0.2 
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Fig. 12 SEM micrographs showing the cracks near the sprue-rod junction: (a) Mg-0.2 
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Fig. 13 As-cast structure Mg-4 wt.% Y alloy. Also shown here the EDS results of point 
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Fig. 14 SEM micrographs of hot tear surfaces of (a) Mg-0.9 wt.% Y and (b) Mg-1.5 wt.% 
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Fig. 15 Total crack volume measured by X-ray micro-tomography for Mg-Y alloys. 
 



 
Fig. 16 Comparison of predicted CSC and experimental hot tearing tendency for Mg-Y 
binary alloys. 
 
 

     
Fig. 17 Solidification processes of (a) Mg-0.9 wt.% Y and (b) Mg-4 wt.% Y, which are 
calculated using Scheil’s model. 
 

 
Fig. 18 Bridging of hot cracks at 250°C mold temperature: (a) Mg-0.9 wt.% Y, (b) Mg-
1.5 wt.% Y. 
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Fig. 19 Initiation temperature of hot tearing and its corresponding solid fraction as a 
function of the Y content. 
 
 
 
 

Table 1 Hot tearing features and predicted vulnerable temperature ranges of Mg-Y alloys.  

Alloy T0.9(°C) T0.99(°C) ∆T(°C) 

Mg-0.2 wt.% Y 644.39 637.89 6.50 

Mg-0.9 wt.% Y 639.50 593.76 45.74 

Mg-1.5 wt.% Y 632.21 574.45 57.76 

Mg-4 wt.% Y 601.93 574.45 27.48 
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