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Abstract

A novel class of cohesive constitutive models suitable for the analysis of material separation
such as that related to cracks, shear bands or delamination processes is presented. The pro-
posed framework is based on a geometrically exact description (finite deformation) and it
naturally accounts for material anisotropies. For that purpose, a Helmholtz energy depend-
ing on evolving structural tensors is introduced. In sharp contrast to previously published
anisotropic cohesive models with finite strain kinematics based on a spatial description,
all models belonging to the advocated class are thermodynamically consistent, i.e., they
are rigorously derived by applying the Coleman & Noll procedure. Although this proce-
dure seems nowadays to be standard for stress-strain-type constitutive laws, this is not the
case for cohesive models at finite strains. An interesting new finding from the Coleman &
Noll procedure is the striking analogy between cohesive models and boundary potential
energies. This analogy gives rise to the introduction of additional stress tensors which can
be interpreted as deformational surface shear. To the best knowledge of the authors, those
stresses which are required for thermodynamical consistency at finite strains, have not been
taken into account in existing models yet. Furthermore, theadditional stress tensors can
result in an effective traction-separation law showing a non-trivial stress-free configuration
consistent with the underlying Helmholtz energy. This configuration is not predicted by
previous models. Finally, the analogy between cohesive models and boundary potential en-
ergies leads to a unique definition of the controversially discussed fictitious intermediate
configuration. More precisely, traction continuity requires that the interface geometry with
respect to the deformed configuration has to be taken as the average of both sides. It will
be shown that the novel class of interface models does not only fulfill the second law of
thermodynamics, but it also shows an even stronger variational structure, i.e., the admissi-
ble states implied by the novel model can be interpreted as stable energy minimizers. This
variational structure is used for deriving a variationallyconsistent numerical implementa-
tion.
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1 Introduction

Since the early work by Barenblatt [1] on quasi-brittle materials (see also [2]) and
that by Dugdale [3] on ductile metals,cohesive interface modelsrepresent one of
the most powerful and versatile tools available for the analysis of material failure.
Within such models, cohesive tractions (stress vector acting at a crack), usually
given in terms of the crack width (displacement discontinuity), resist the separa-
tion of the bulk material across the crack. Accordingly, they are based on stress-
displacement laws (instead of a classical stress-strain-relationship). This is why
they are often referred to astraction-separation laws. One of the most important
advantages of such discrete representations of material failure is that the width of
the respective failure zone is approximated as zero (with respect to the undeformed
configuration) and thus, the length scale associated with material failure is a priori
infinitely smaller than that of the considered structure. Asa result, cohesive in-
terface models are intrinsically multiscale approaches, cf. [4]. Another important
advantage of interface models when combined with continuumapproaches is their
naturally induced size effect, cf. [5] (see also [6]). For a more detailed analysis of
the physical properties related to interface models, the interested reader is referred
to [4].

While the number of different cohesive interface models in the literature is tremen-
dous (for an overview, see [7,8] and references cited therein), interface laws specif-
ically designed for material failure at finite strains are still relatively rare – particu-
larly for anisotropic solids. However, geometrically nonlinear effects and anisotropic
mechanical responses do play an important role in many applications, e.g., in de-
lamination processes, cf. [9].

Roughly, geometrically exact cohesive models can be subdivided into two groups.
The first group of such interface models originally developed for slip bands (mode-
II or mode-III failure) is based on the so-calledmaterial displacement discontinuity,
cf. [10,11] (see also [12–18]). Conceptually, instead of using the displacement jump
JuK itself, its pull-backJ = F−1 · JuK is employed. Usually, although not manda-
tory, it is assumed that the localized deformationsJ are of purely irreversible, plas-
tic nature. In line with classical plasticity theory (stress-strain relation), they only
occur, if a stress-based criterion is fulfilled (depending on a yield function) and they
are governed by evolution equations similar to those of the plastic strains. Clearly,
by using a referential description, the requirements imposed by the principle of
objectivity are a priori fulfilled. Furthermore, the analogy to classical continuum
plasticity theories makes it possible to apply already existing powerful and well
established techniques such as the Coleman & Noll procedure, cf. [19,20]. For this
reason, models falling into the range of this class are relatively well developed and
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thermodynamically consistent, e.g., they comply with the constraints imposed by
the second law of thermodynamics.

Although the aforementioned group of interface models seems to be very promis-
ing, it is not well suited for some applications. The first reason is rather techni-
cal: From a materials science point of view, it is more natural to work with true
stresses and true displacements (instead of using a referential description). The
second point is, however, more crucial: Using the material displacement disconti-
nuity within constitutive laws implies that the physical displacement jump consists
of an additional convective term, i.e.,Ju̇K = Ḟ · J + F · J̇ (Here, the super-
posed dot denotes the material time derivative.). Accordingly, even for an unload-
ing process (̇J = 0), the length of the physical displacement jump may change,
i.e., (J̇ = 0 6⇒ || Ju̇K || = 0). This effect is similar to that known from classical
finite strain plasticity theory based on an evolution equation formulated within the
intermediate configuration. Depending on the underlying failure process, it can be
desired (for ductile plastic slip) or unphysical (for quasi-brittle materials).

For quasi-brittle materials, the second group of interfacemodels is more suitable. In
contrast to the aforementioned framework, it is based on a traction-separation law
described with respect to the current, i.e., deformed, configuration. Consequently,
the introduction of the material displacement discontinuity is not required. Mod-
els representative of this class can be found, e.g., in [21,22,9,23,24]. Clearly, the
constraints imposed by the fundamental principles of constitutive modeling such
as those related to the principle of objectivity are not automatically fulfilled and
thus, they require special attention. However, thermodynamical principles are most
frequently not carefully considered within this modeling class, but the respective
traction-separation laws are directly postulated in an ad-hoc manner, cf. [9,25,26].
Within the framework of (classical) continuum mechanics, such models would con-
sequently be refereed to as Cauchy-elastic. By way of contrast, thermodynamically
consistent cohesive models belonging to the second group ofinterface approaches
can be found in [21–23]. With the sole exception of the work [21], only isotropic1

models are discussed within the cited paper. As mentioned in[22], this is due to
the additional structural tensors required for describingthe material’s anisotropy.
For instance, if a mode-I mode-II-III decomposition is considered, the material’s
anisotropy can be suitably defined by the normal vectorn of the respective crack.
However,n changes during deformation and thus, it also leads to a change in
Helmholtz energy. Since no energetically conjugate variable has been introduced in
[21,22], this term would lead either to unphysical dissipation (even in case of fully

1 In the present paper, cohesive zone models are derived from aHelmhoholtz energyΨ
depending, among other variables, on the displacement jumpJuK, i.e.,Ψ = Ψ(JuK). In line
with a frequently applied notation in continuum mechanics (see [27,28]), such constitutive
models are referred to asisotropic in what follows, if the scalar-valued functionΨ depends
on JuK through its only invariant|| JuK ||. Models not fulfilling this requirement are defined
as anisotropic.
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elastic deformations), or the stiffness matrix characterizing the interface would be
unsymmetric (even in case of fully elastic deformations). Clearly, both points are
not physical. A first attempt towards an anisotropic interface model for the second
modeling class was made in [21]. However, a more careful analysis reveals that
the aforementioned critical points have not been considered and thus, the resulting
model is not thermodynamically consistent.

Recently, a thermodynamically consistent framework suitable for the analysis of a
certain class of interfaces was proposed in [29]. Focus was on hyperelastic bound-
ary potentials. For describing anisotropic materials, structural tensors were included
within the respective Helmholtz energy. By focusing on hyperelastic solids and by
applying the principle of minimum potential energy, the balance equations and the
constitutive response were derived. According to [29], additional stress tensors en-
ergetically conjugate to the change in the structural tensors naturally occurred. In
the present paper, a similar viewpoint is adopted. However,and in sharp contrast to
[29], internal interfaces including an irreversible response are analyzed.

Adopting a thermodynamically and energetically consistent viewpoint, the novel
class of interface models advocated within the present paper is based on a cer-
tain Helmholtz energy. For a broad range of application, only few assumptions are
made. More specifically, this energy is additively decomposed into different parts
related to the different failure modes (such as mode-I failure). Each failure mode
depending on evolving structural tensors, in turn, is governed by an effective scalar-
valued damage parameter which is multiplicatively decomposed into the underlying
degradation mechanisms. Starting with this Helmholtz energy, the interface models
are derived by rigorously applying the Coleman & Noll procedure. The probably
most important step within the derivation is the introduction of additional stress
tensors within the stress power. Such stresses, similar to those in [29] can be inter-
preted as stresses related to the deformational surface shear. To the best knowledge
of the authors, those stresses which are required for thermodynamical consistency
at finite strains, have not been taken into account in existing models yet. Equally im-
portantly, the additional stress tensors can result in an effective traction-separation
law showing a non-trivial stress-free configuration consistent with the underlying
Helmholtz energy. This configuration is not predicted by conventional, i.e., previ-
ous, models. Furthermore, the consideration of the additional stress tensors leads
to a unique definition of the controversially discussed fictitious intermediate con-
figuration. More explicitly, traction continuity requiresthat the interface geometry
with respect to the deformed configuration has to be taken as the average of both
sides.

Clearly, the constraints imposed by the second law of thermodynamics are rela-
tively weak. Hence, they do not lead to unique evolution equations, but rather to
a set of admissible evolution equations. A canonical ordering of this set is given
by the principle of maximum dissipation, cf. [30]. Materialmodels obeying that
principle are also referred to asstandard dissipative solids, cf. [31,32]. It can be
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shown that maximizing the dissipation is in many cases equivalent to minimiz-
ing the stress power, cf. [33,34]. This equivalence gave rise to the introduction of
so-calledvariational constitutive updatesas advocated by Ortiz and co-workers
[35–37] and further also elaborated by others, see, e.g., [38–42]. Within such up-
dates all unknown state variables, together with the total deformation, follow jointly
and conveniently from minimizing the integrated stress power. The mathematically
and physically elegant variational structure of those updates results in significant
advantages compared to standard conventional approaches.For instance, standard
optimization algorithms can be applied for solving the mechanical problem. Fur-
thermore, a minimization principle implies the existence of a natural distance (semi
metric) which is the foundation for error estimation and thus, for adaptive finite
elements methods, cf. [43]. For the aforementioned reasons, the novel class of in-
terface models is reformulated into that variationally consistent framework. Con-
sequently, the admissible states implied by the new models can be interpreted as
stable energy minimizers. This variational structure is also used within the numer-
ical implementation yielding a so-calledvariational constitutive update.

The present paper is organized as follows: First, existing interface models are
briefly discussed and analyzed in Section 2. Subsequently, the kinematics induced
by localized material failure are concisely reviewed in Section 3. The probably
most important novel contributions can be found in Sections4 and 5. While Sec-
tion 4 is concerned with fully elastic interfaces, materialdegradation is considered
in Section 5. The mechanical response of the resulting modelis first analyzed in
Section 6 for a single material point. A more complex numerical example is stud-
ied in Section 7.

2 State of the art review – existing models

In this section, the most frequently applied modeling classes suitable for the devel-
opment of cohesive interface laws are briefly discussed. Only those models which
are based on a spatial description will be analyzed. Approaches associated with the
material displacement jump can be found elsewhere, e.g., in[4].

In line with the recent work [44], the existing models are classified into potential-
based formulations and non-potential-based. However and in contrast to [44], large
strain effects will also be considered and special attention is drawn to the thermo-
dynamical consistency.
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2.1 Non-potential-based models

Within non-potential-based models, the traction vectorT acting within the respec-
tive shear band or crack is a priori and in an ad-hoc manner coupled to the displace-
ment jumpJuK, cf., e.g., [9,25,26]. As a result, focusing on elastic processes and
neglecting material anisotropies for now, such models are of the form

T = T (JuK). (1)

Accordingly, they would be referred to as Cauchy-elastic within the framework of
continuum mechanics, see [28]. As a result, symmetry of their tangent matrix is
not a priori guaranteed and thus, such models cannot be derived from a potential in
general. Therefore, the resulting dissipation might be non-vanishing, even in case
of elastic loading.

An additional problem associated with this modeling class is that usually two in-
dependent models are introduced: one for loading and an additional ad-hoc model
for unloading, cf. [45]. This is again in sharp contrast to the thermodynamically
sound procedure known from classical stress-strain-basedconstitutive models. For
instance, in case of finite strain plasticity theory (see [46]), loading as well as un-
loading follow jointly and uniquely from the definition of the same Helmholtz en-
ergy. The same holds for damage-type constitutive laws, see[47].

In summary, even though the applicability of non-potential-based models have been
shown in many practical applications, these models are not thermodynamically con-
sistent in general. Consequently, it is desirable to improve such models accordingly.

Remark 1 Some authors claim that due to the path-dependence, the tangent ma-
trix dT /dJuK does not need to be necessarily symmetric, see [48]. Therefore, they
abandon the symmetry requirement completely. This statement is, however, only
partly correct. First, although symmetry and path-dependence are indeed related,
they are not equivalent. More explicitly, path-dependent associative plasticity mod-
els do lead to a symmetric tangent. Secondly and even more importantly, interfaces
can unload elastically. At least in this case, the respective matrix has to be symmet-
ric.

2.2 Potential-based models

The previous discussion showed that a thermodynamically sound cohesive models
has necessarily to be derived from a potential energy. In this subsection, two differ-
ent classes of potential-based models are briefly discussed. While, traditional Xu &
Needleman-type approaches are addressed in the first paragraph, models based on
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a stored Helmholtz energy are analyzed subsequently.

2.2.1 Models in line with that of Xu & Needleman, cf. [49,50]

Within the modeling class originally proposed by Xu & Needleman, cf. [49,50]
(see also [44] and references cited therein), the traction vector is derived from a
potentialφ. More explicitly,

T =
∂φ

∂ JuK
, with φ = φ(JuK). (2)

Again, referring to stress-strain-based constitutive models, traction-separation law (2)
would be called hyperelastic. However, such models are usually applied to the mod-
eling of material failure which is intrinsically a non-conservative process. Equally
importantly, the dissipation related to material failure is not defined by this class
of material models, at least not explicitly. The third critical point is similar to one
of the non-potential-based models. Since Eq. (2), althougha potential, is designed
for capturing the material response under loading, an additional cohesive model is
required in case of unloading. Usually, linear elastic unloading to the origin is as-
sumed. In summary, models in line with Xu & Needleman, cf. [49,50] do still not
solve all problems previously discussed for non-potential-based approaches.

2.2.2 Models based on a stored energy potential

Only relatively recently, thermodynamically consistent cohesive models have been
proposed, cf. [21–23]. Analogously to standard stress-strain-relations, their founda-
tion is the assumption of a suitable energy potential. In contrast to Xu & Needleman-
type constitutive laws, this energy, which is the Helmholtzenergy, depends in addi-
tion to the displacement jump also an a set of internal variables related to the defor-
mation history. Starting from this Helmholtz energy, the traction-separation law is
derived by applying the Coleman & Noll procedure. It bears emphasis that the re-
sulting constitutive model holds for loading as well as for unloading. In this respect,
the framework is unique, i.e, one Helmholtz energy defines all states (provided the
deformation and the internal variables are known). For developing suitable evo-
lution equations for the internal variables, the second lawof thermodynamics is
employed. As a consequence, the constraints imposed by the principles of thermo-
dynamics are a priori fulfilled. For these reasons, only thisclass of models will be
considered in presented paper.
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2.3 Finite deformation – spatial description

Finally, some complementary remarks concerning a spatial description are given
here. In the case of large deformations, additional principles such as that of objec-
tivity have also to be taken into account. However, the probably most serious point
is related to the modeling of material anisotropies (see footnote on page 3) such
as that implied by a decomposition of the traction vector into a normal and a shear
part. As mentioned in [22], the structural tensors may evolve and consequently, they
lead to a change in the Helmholtz energy. For instance, taking the normal vectorn
of a crack as the structural tensor, focusing on fully elastic processes, together with
a stress power of the typeT · Ju̇K, the dissipation reads

D = T · Ju̇K − Ψ̇(JuK ,n) =
(

T − ∂JuKΨ
)

· Ju̇K − ∂nΨ · ṅ (3)

Here,Ψ is the Helmholtz energy. Hence, by postulating the standardrelationT =
∂JuKΨ, the dissipation does not vanish. This is the reason why so far only isotropic
models being thermodynamically sound can be found in the literature. In the present
paper, however, anisotropic models which also fulfill the second law of thermody-
namics are derived for the first time.

3 Kinematics of discontinuous deformation mappings

This section is concerned with a concise summary of the kinematics induced by
strong discontinuities. Furthermore, it provides the notations used within the present
paper. Further details on the kinematics of discontinuous deformation mappings can
be found elsewhere, e.g., in [8,4,51].

In what follows, a bodyΩ is considered to be separated during deformation into the
two partsΩ− andΩ+ by means of an internal surface∂sΩ, i.e.,Ω = Ω−∪Ω+∪∂sΩ
(Fig. 1). Physically speaking,∂sΩ is a crack or a shear band. The orientation of∂sΩ
with respect to the undeformed configuration is locally defined by its normal vector
N . In line with standard notation, the normal vectors are postulated as pointing
outwards, i.e.,N− = −N+ = N . Since the interface∂sΩ is a two-dimensional
submanifold inR3 (at least locally), it proves convenient to represent it by means
of curvilinear coordinatesθα (θ = 1; 2), i.e.,

X = X(θα), ∀X ∈ ∂sΩ. (4)

With this parameterization, the tangent vectorsGα = ∂θαX , the normal vector
N = G1×G2/||G1×G2|| as well as the contravariant basisGα can be computed
in standard manner.
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X3

∂SΩ

Ω+

N−

Ω−

ϕ(Ω+)

X

ϕ(Ω−)

X1

X2

n−

n+

ϕ(∂sΩ)

n̄

x+

x− JuK

Fig. 1. BodyΩ ⊂ R
3 separated into two partsΩ− andΩ+ by an interface∂sΩ

The motion of the sub-bodiesΩ− andΩ+ is described by the deformation mapping
ϕ : Ω ∋ X 7→ x ∈ ϕ(Ω). By introducing the displacement fieldu, ϕ can be
rewritten asϕ = id + u with id being the identity mapping. According to Fig. 1,
the undeformed configuration is continuous, while the displacement field is discon-
tinuous. Consequently, denotingu± as the displacement field inΩ+ andΩ− andHs

as the Heaviside function of∂sΩ, u is of the type

u = u− +Hs

(

u+ − u−
)

. (5)

With Eq. (5) and assuming sufficient regularity ofu, the displacement discontinuity
JuK at∂sΩ can be uniquely defined as

JuK = u+ − u− ∀X ∈ ∂sΩ. (6)

As a result, a pointX belonging to the interface∂sΩ decomposes during deforma-
tion into the two non-connected points

x− = X + u−

x+ = X + u− + JuK
∀X ∈ ∂sΩ. (7)

Since the deformation inΩ− and that inΩ+ are in general uncoupled, the normal
vectorsn− andn+ associated with that point are usually not parallel. For this rea-
son, a fictitious intermediate configurationx̄ betweenx− andx+ is frequently con-
sidered (dashed surface in Fig. 1). Introducing a scalar-valued weighting parameter
α, that new configuration can be defined as

x̄ = (1− α) x− + α x+, α ∈ [0; 1]. (8)

In most cases,α is set toα = 1/2, i.e., the fictitious deformed interface is assumed
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to be the average ofx− andx+. Based onx−, x+ and x̄, the local topology of
the deformed interface∂sΩ can be computed in line with that of the undeformed
configuration, i.e.,

g−
α=∂θαx

− n−=g−
1 × g−

2 /||g−
1 × g−

2 ||
g+
α=∂θαx

+ n+=g+
1 × g+

2 /||g+
1 × g+

2 ||
ḡα=∂θαx̄ n̄ = ḡ × ḡ / ||ḡ × ḡ||.

(9)

The choice of the parameterα defining the normal vector of the intermediate con-
figuration is a controversially discussed subject in the literature, cf. [52,21,22,9]. In
the present paper, it will be shown that the condition of traction continuity leads to
a uniquely defined parameterα.

4 Elastic Interfaces

This section is concerned with the modeling of interfaces showing a fully elastic
response, i.e., focus is on hyperelastic material models fulfilling the second law
of thermodynamics. By utilizing the framework of rational thermodynamics (see
[19,20]), all constitutive laws discussed here are rigorously derived by means of the
by now classical Coleman & Noll procedure, cf. [53]. Consequently, the dissipation
inequality (equality in case of purely elastic deformations)

D =
◦
w −Ψ̇ =≥ 0 (10)

decomposed into the stress power
◦
w and the material time derivative of the Helmholtz

energyΨ will play an important role. Though the procedure originally introduced
in [53] is well established in case of standard stress-strain-type constitutive laws,
it has not been considered for a general framework of cohesive zone models in a
spatial setting yet.

This section is organized as follows: In Subsection 4.1, isotropic constitutive mod-
els are briefly discussed. The extensions necessary for anisotropic materials are
given in Subsection 4.2. A special subclass of those being models based on a de-
composition of the deformation into a normal component and ashear part is an-
alyzed in Subsection 4.3. Finally, the mechanical responseof the novel family of
cohesive models is highlighted in Subsection 4.4.
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4.1 Isotropic models

Isotropic cohesive models are nowadays relatively well understood, cf. [21–23].
Expressing the Helmholtz energyΨ in terms of quantities associated with respect
to the deformed configuration,Ψ does not depend on any structural tensoris, i.e.,Ψ
is allowed to depend only on the jumpJuK itself. Consequently,

Ψ = Ψ(JuK) ⇒ Ψ̇ =
∂Ψ

∂ JuK
· ˙JuK. (11)

According to Eq. (11), only one stress-like variable conjugate toJuK is present. By
denoting this variable, which is the traction vector withinthe interface, asT , the
stress power is written as

o
w= T · ˙JuK. (12)

Hence, application of the Coleman & Noll procedure yields

D =

[

T − ∂Ψ

∂ JuK

]

· ˙JuK = 0 ⇒ T =
∂Ψ

∂ JuK
. (13)

As a result and as expected, the stress vectorT is the partial derivative of the
Helmholtz energy with respect to its dual variableJuK.

For analyzing the mechanical response induced by a Helmholtz energy of the type (11),
the restrictions imposed by the principle of material frameindifference (Ψ(JuK) =
Ψ(Q · JuK), ∀Q ∈ SO(3)) are a priori enforced. As shown, e.g., in [54,55], they
are equivalent to postulating

Ψ = Ψ(|| JuK ||). (14)

Hence,Ψ is allowed to depend onJuK only through its only invariant|| JuK ||. This
requirement is equivalent to the standard definition of isotropy of a scalar-valued
tensor function (see footnote on page 3). Using Eq. (14), thetraction vector (13)2
results in

T =
∂Ψ

∂|| JuK ||
JuK

|| JuK || . (15)

Accordingly,T is parallel to the displacement discontinuityJuK. Therefore, such
models are frequently interpreted as rubber bands connecting the two different sides
of an interface, cf. [22,9].
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4.2 Anisotropic models

In the more general case, the stored energy functionalΨ may additionally depend
on some structural tensorsai. Accordingly, the respective energy reads

Ψ = Ψ(JuK ,a1, . . .an). (16)

Since a spatial setting is adopted, those tensors may evolvein time, i.e.,ȧi 6= 0.
They are related to their time-invariant material counterpartsAi by a push-forward
transformation. For that purpose, the average deformationgradient

F̄ = (1− α) F− + α F+, α ∈ [0; 1] (17)

is introduced. In Eq. (17),F± are the surface deformation gradients, cf. [29], i.e.,
F+ andF− map only tangent vectors. Clearly, by using the cross product of such
tangent vectors, the normal vector can nevertheless be computed. Forα = 1/2, F̄
results in the classical average deformation gradient. Evidently, the choice ofα will
affect the resulting traction-separation law. This will beanalyzed in Subsection 4.4.
By combining Eq. (16) with Eq. (17), the Helmholtz energy (16) can be rewritten
as

Ψ = Ψ(JuK ,F−,F+,A1, . . .An), with Ȧi = 0. (18)

The analogy between cohesive laws and boundary potential energies can clearly be
seen from Eq. (18). More precisely, by denoting the deformation gradient charac-
terizing an external boundary aŝF and its normal with respect to the undeformed
configuration asN , the respective energies are often assumed to be of the type

Ψ = Ψ(F̂ ,N), with Ṅ = 0 (19)

(see [29] for a recent overview). Hence, for constant displacement jumpsJuK and
the special choiceA1 = N , the cohesive model (18) can indeed be interpreted as a
sum of two boundary potentials. However and in contrast to boundary potentials as-
sociated with external surfaces, cohesive models have to fulfill certain compatibility
conditions, i.e., traction continuity. It will be shown that the constraints imposed by
such conditions will define the parameterα.

Starting from Eq. (18) and assuming further that the spatialvectorsai are defined
by a push-forward of their material counterpartsAi through the deformation gradi-
ent (17), the rate of the Helmholtz energy is computed as

Ψ̇ =
∂Ψ

∂ JuK
· ˙JuK +

∂Ψ

∂F̄
:
[

(1− α) Ḟ
−
+ α Ḟ

+]

. (20)
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It bears emphasis that the deformation gradientsF± and the displacement discon-
tinuity JuK are only weakly coupled (F+ = F − + GRADJuK)). Hence, the stress
power consists of three terms in general. By introducing twostress tensorsP±

of first Piola-Kirchhoff type being conjugate to the deformation gradientsF±, the
stress power can thus be written as

o
w= T · ˙JuK + P− : Ḟ

−
+ P+ : Ḟ

+
. (21)

Although this decomposition of the stress power is natural,it seems that all ex-
isting cohesive models in the literature do not account for the two additional terms
related toF±. Evidently, if the deformation is infinitesimally small, these terms can
be neglected. However, for finite strains they do not vanish and consequently, they
have to be taken into account. Physically speaking, they correspond to the bound-
ary potentials of each sideΩ±. Alternatively, the constitutive models addressed in
the present paragraph can be interpreted as gradient-type models, since in contrast
to JuK, F± are gradient terms. Independently of the interpretation, the respective
terms also appear, if only the normal vectorN of the displacement discontinuity
is taken as a structural tensor. Consequently, the aforementioned points apply to all
models based on a decomposition of the traction vector into anormal component
and a shear part. Accordingly, without considering the additional terms in Eq. (21),
such models are not thermodynamically consistent and hence, they can result in
non-vanishing dissipation even in case of elastic unloading. In Subsection 4.4 this
aspect is carefully analyzed by means of an illustrative example.

Having defined the Helmholtz energy and its corresponding rate (20) and having
introduced the stress power (21), the constitutive relations are obtained from the by
now standard Coleman & Noll procedure, cf. [53], i.e., by evaluating the dissipation
inequality for fully reversible states, the constitutive equations

T =
∂Ψ

∂ JuK
, P− =

∂Ψ

∂F− = (1− α)
∂Ψ

∂F̄
, P+ =

∂Ψ

∂F + = α
∂Ψ

∂F̄
(22)

are found. Accordingly, in addition to the classical constitutive model (22)1, two
boundary-like laws are also implicitly defined by the Helmholtz energy (18). They
are formally identical to those reported in [29]. However and in contrast to bound-
ary potentials, the total stress vectorT characterizing cohesive models (internal
interfaces) is subjected to the condition of traction continuity. Thus, by considering
Cauchy’s equationT = P · N , the only admissible choice for the scalar-valued
parameterα is α = 1/2, i.e., the fictitious mid-surface. This is an interesting re-
sult, since many discussions on the choice ofα can be found in the literature, cf.
[52,21,22,9].

It should be noted that besides the condition of traction continuity, the principle of
material frame indifference imposes some additional constraints on the Helmholtz
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energyΨ, i.e.,Ψ(JuK ,a1, . . .an) = Ψ(Q · JuK ,Q ·a1, . . . ,Q ·an), ∀Q ∈ SO(3)
has to hold. As stated in [54,55], such constraints can be effectively fulfilled by
using an irreducible integrity basis. However, since this basis is, depending on the
numbern, quite lengthy, it is omitted here. In case ofn = 1 which will be discussed
in the next subsection, some further comments on objectivity will be given.

Remark 2 In the present paper, both the deformation gradient of the bulk as well
as that at of an interface are denoted asF . From the authors point of view, con-
fusion is nevertheless excluded. Usually,F is the surface deformation gradient
whenever an interface is considered. Otherwise, it will be stated explicitly.

4.3 Mixed-mode models based on a normal-shear decomposition of the displace-
ment discontinuity

It has been observed in many experimnents that the failure mechanisms in mode-I
or mode-II and mode-III can differ significantly, cf. [9]. Inthe present subsection,
a cohesive zone model capturing such features is discussed.For that purpose, a de-
composition of the displacement jump and the traction vector into a normal compo-
nent and the remaining shear part is frequently applied, cf.[21,44] (see also [9] and
references cited therein). Such constitutive laws can be considered as a special case
of those discussed in the previous subsection. More explicitly, they correspond to

Ψ = Ψ(JuK ,F−,F+,A1), with A1 = N . (23)

Here,N is the normal vector defining locally the topology of the internal surface
∂sΩ. Sincen̄ = n̄(F̄ ,N), application of Eqs. (22) yields

T =
∂Ψ

∂ JuK
and

P−=
∂Ψ

∂F −=(1− α)
∂Ψ

∂F̄
=−(1− α) n̄⊗ ∂Ψ

∂n̄
· F̄−T

P+=
∂Ψ

∂F += α
∂Ψ

∂F̄
= −α n̄⊗ ∂Ψ

∂n̄
· F̄−T

.

(24)

Within the representation ofP± as a rank-one tensor, the classical deformation
gradient has to be used (more precisely,n = F−T ·N ). For highlighting the analogy
between this family of cohesive models and boundary potential energies, Eqs. (24)2

and (24)3 are rewritten as

P−=n̄⊗ Ŝ
−

0

P+=n̄⊗ Ŝ
+

0

(25)
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with

Ŝ
−

0 =−(1 − α)
∂Ψ

∂n̄
· F̄−T

Ŝ
+

0 = −α
∂Ψ

∂n̄
· F̄−T

.

(26)

Accordingly, Ŝ can be interpreted as a deformational surface shear, cf. [29,56].
Furthermore and as already mentioned in the previous subsection, continuity of the
traction vector requiresα = 1/2.

Since the class of cohesive models discussed within the present subsection is fre-
quently applied in solid mechanics, the constraints imposed by the principle of
material frame indifference are briefly summarized as well.According to [54,55],
an energy of the typeΨ = Ψ(JuK , n̄) is material frame indifferent, if and only if it
can be expressed in terms of|| JuK || and the normal component of the displacement
jump JuK · n̄. Hence, the Helmholtz energy has to be of the type

Ψ = Ψ̃(|| JuK ||, ū · n̄). (27)

Since the norm of the shear deformationJuKs can be written as

|| JuKs || =
√

|| JuK ||2 − (JuK · n̄)2, with JuKs := JuK − (JuK · n̄) n̄(28)

every Helmholtz energy of the formΨ = Ψ(JuK · n̄, || JuKs ||) fulfills evidently the
principle of material frame indifference (see, e.g., [52,21]).

4.4 Illustrative example

In this section, the influence of the stress tensorsP± as well as the choice of the
parameterα defining the deformed configuration of the internal surface∂sΩ is care-
fully analyzed. For that purpose, a mode-I traction-separation law characterized by
a Helmholtz energy of the type

Ψ =
1

2
c (JuK · n̄)2 (29)

is considered. Here,c is a material parameter related to the stiffness of the interface.
For analyzing the mechanical response corresponding to Helmholtz energy (29),
a straight and vertically oriented interface of unit lengthis chosen (see Fig. 2).
Consequently, withei denoting the vectors of the cartesian basis, the undeformed
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x−

x+

n̄

JuK

x̄

β

a)α = 0.5, β = 180◦

n̄

JuK

β

x−

x+ = x̄

b) α = 1.0, β = 90◦

Fig. 2. Non-trivial stress-free configurations of the interface model (29) for two different
parametersα.

configuration is given by

X = e2 θ, θ ∈ [0; 1] (30)

with θ representing the curvilinear coordinate. This interface is fixed on the left
hand side, while the right hand side moves during deformation. Thus, the deformed
configuration is described by

x− = X, x+ = x− + JuK , x̄ = (1− α) x− + α x+. (31)

It bears emphasis that the intermediate configuration¯(•) enters the potentialΨ only
through the normal vector̄n. Thus, the length of the interface in the intermediate
configuration is irrelevant. Since the influence ofP± and that ofα on the resulting
traction vector is only visible in case of large deformations and a non-vanishing
gradient of the displacement discontinuity, a displacement field of the type

JuK = JuK(n) θ, with JuK(n) = [sin β; cos β − 1]T (32)

is adopted. In Eq. (32),JuK(n) is the displacement discontinuity at the position
θ = 1 of the interface. According to Eqs. (32) and (31), the vertically oriented
interface is fixed at the left hand side, while the right hand side is rotated around
the positionθ = 0 of the interface, cf. Fig. 2. Having defined the deformation of
the interface, the tangent vectorḡ1 = ∂θx̄ of the fictitious deformed configuration
can be computed and finally, the normal vectorn̄ with n̄ · ḡ1 = 0 and||n̄|| = 1.
Clearly, since the interface remains straight during deformation (the deformation
depends linearly onθ), the normal vector is spatially constant, i.e.,n̄ 6= n̄(θ).

In what follows, the stress vector and the integrated force vector associated with
the interface model (29) as a result of the aforementioned deformation mode are
analyzed. By applying Eq. (24)1, the linearly varying traction vector implied by
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Eq. (29) yields

T = ∂JuKΨ = c (JuK · n̄) n̄ (33)

and thus, the corresponding force is obtained as

F T :=

1∫

0

∂Ψ

∂ JuK
dθ =

1∫

0

T dθ =
1

2
c (JuK(n) · n̄) n̄. (34)

Accordingly,T as well as the force vectorF T are parallel tōn.

As evident, the considered deformation does not only lead toa monotonically
increasing displacement jumpJuK, but also to a varying normal vector̄n. The
stresses or forces related to such a variation are included in the stress tensorsP±,
cf. Eq. (24). Alternatively, they can be taken into account by replacing the partial
derivative in Eq. (34) by the total differential, i.e.,

F total :=

1∫

0

T total dθ :=

1∫

0

dΨ
dJuK

dθ =

1∫

0

[

T +
∂Ψ

∂n̄
· ∂n̄

∂ JuK

]

dθ. (35)

It bears emphasis that usuallyF total depends onF± as well. However, for the
special deformation analyzed here,JuK is the only independent displacement-like
variable. More precisely,F+ = F− + GRADJuK, together withF− = const,
holds. As a result, a variation of the Helmholtz energyΨ with respect toF+ can
equivalently be expressed by a variation of the displacement discontinuity, i.e.,

δF + = δGRADJuK = δ JuK(n) ⊗G1. (36)

Here,G1 is the first covariant vector. Clearly, sinceGi is a cartesian basis,G1 =
G1 = e2 holds. By combining Eq. (36) with Eq. (24)3, the variation of the Helmholtz
energy through the normal vectorn̄ is computed as

δn̄∂Ψ :=
∂Ψ

∂n̄
· ∂n̄
∂F̄

: δF̄

=
α c

θ
(JuK · n̄)

(

JuK · ∂n̄
∂F̄

·G1

)

· δ JuK

(37)

and consequently, the total tractionsT total acting within the interface are given by

T total = c (JuK(n) · n̄) n̄
︸ ︷︷ ︸

= T

+
α c

θ
(JuK · n̄)

(

JuK · ∂n̄
∂F̄

·G1

)

︸ ︷︷ ︸

:= T n̄

. (38)
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JuK(n) · e2

1

−2

0

JuK
(n) · e1

a)α = 0.5: n̄ = 1/2(n− + n+)

JuK
(n) · e2

1

0

−2
JuK

(n) · e1

b) α = 1.0: n̄ = n+

Fig. 3. Integrated Helmholtz energy (29) depending on the parameterα as function in terms
of the displacement discontinuityJuK.

In Eq. (37), the identityδF̄ = α δF + has been used. Evidently,T n̄ is related to a
variation of the normal vector.

While the interpretation ofT is straightforward,T total can be conveniently an-
alyzed by the integrated Helmholtz energy. For two different parametersα, this
energy is shown in Fig. 3. According to Fig. 3b), the energy has a local extremum
at JuK(n) · e2 = −1 for α = 1.0. Consequently, the respective stress vectorT total

vanishes. At first glance, a non-trivial stress-free configuration seems to be unphys-
ical. However, that state corresponds to a rotation ofΩ+ of β = 90◦. As shown in
Fig. 2b), in this case, a variation ofJuK(n) · e1 does not influence the normal com-
ponentJuK ·n and therefore, the energy should indeed be constant inX1-direction.
Furthermore, a straightforward computations shows that the energy is symmetric
with respect to a variation ofJuK(n) · e2 for β = 90◦. For this reason, this non-
trivial stress-free configuration is indeed consistent with the underlying Helmholtz
energy. It bears emphasis that this physically relevant configuration is captured by
none of the existing models. Fortunately, it only appears, if the rotation between
both sides of the interface is very large and thus, it can often be neglected in prac-
tical applications. Furthermore, it depends crucially on the underlying constitutive
law as well as on the parameterα.

5 Inelastic interfaces – Damage models

Having discussed the fully reversible case, focus is now on inelastic processes. In
the present section, theses processes are assumed to be associated with stiffness
degradation of the considered interface. Hence, they will be modeled by means of
damage mechanics. For plastic effects, the interested reader is referred to [16,17].

This section is structured as follows: First, the fundamentals of the novel family of
damage models are given in Subsection 5.1. In Subsection 5.2, two prototype mod-
els falling into the range of that family are briefly summarized: an isotropic as well
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as a mixed-mode fracture model. The novel constitutive description is completed
by suitable damage evolutions which are summarized in Subsection 5.3. Having
introduced the new framework for interface models, a variationally consistent re-
formulation is elaborated in Subsection 5.4. The section finishes with some remarks
concerning the numerical implementation (Subsection 5.5).

5.1 Fundamentals

In this section, a class of damage models is presented. For broadening the range
of application, only few assumptions are made. The first of those is the additive
decomposition of the interface’s elastic energy into different modes, i.e.,

Ψe =
n∑

i=1

Ψi(JuK ,F+,F−). (39)

Each Helmholtz energyΨi possibly depending on structural tensors is associated
with one characteristic deformation mode. A typical example is given in Subsec-
tion 5.2.2, where the energy is decomposed into a shear part and an additional con-
tribution corresponding to the normal separation. A similar decomposition is also
frequently applied in standard stress-strain-based constitutive models, cf. [57,58].
The second assumption is that material damage can be suitably approximated by
means of a set of scalar-valued damage parameters. However,since each defor-
mation typei is captured by its own damage variable, this assumption is not very
crucial and provides enough flexibility. Furthermore, scalar-valued damage param-
eters lead to an effective numerical implementation. The final assumption is that the
different damage mechanisms are coupled multiplicatively. Accordingly, the total
Helmholtz energy of the respective interface reads

Ψ =
n∑

i=1

n∏

j=1

(1− d
(j)
i ) Ψi(JuK ,F+,F−). (40)

Evidently, postulating the standard properties of the damage variablesd(j)i ∈ [0; 1]
automatically guarantees that the effective damage variable is bounded accordingly,
i.e.,

(1− deffi ) :=
n∏

j=1

(1− d
(j)
i ) ⇒ deffi ∈ [0; 1]. (41)
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This would not be the case for an additive decomposition. Application of the Cole-
man & Noll procedure yields the stress response

T =
n∑

i=1

n∏

j=1

(1− d
(j)
i )

∂Ψi

∂ JuK

P−=(1− α)
n∑

i=1

n∏

j=1

(1− d
(j)
i )

∂Ψi

∂F̄

P+= α
n∑

i=1

n∏

j=1

(1− d
(j)
i )

∂Ψi

∂F̄
,

(42)

cf. Eq. (24), together with the reduced dissipation inequality

D =
◦
w −Ψ̇ =

n∑

i=1

n∑

j=1

n∏

k=1,k 6=j

(1− d
(k)
i ) Ψi(JuK ,F+,F−) ḋ

(j)
i ≥ 0. (43)

Since the elastic energiesΨi are assumed to be non-negative andd
(j)
i ∈ [0; 1], the

second law of thermodynamics is automatically fulfilled, ifd
(j)
i is monotonically

increasing, i.e.,

ḋ
(j)
i ≥ 0. (44)

Clearly, physically speaking, Ineq. (44) avoids self-healing of the material.

The class of models presented here is completed by deriving evolution equations
fulfilling ḋ

(j)
i ≥ 0. For that purpose, a suitable set of internal variables has to be

introduced. Conceptually, one could used(j)i directly. However, by doing so, it
might be difficult to enforce the boundednessd

(j)
i ∈ [0; 1]. Therefore, a rescal-

ing by means of internal variablesκ(j)
i ∈ [0;∞) is considered, i.e.,d(j)i is assumed

to be of the typed(j)i = d
(j)
i (κ

(j)
i ). As a result, by defining the internal variablesκ

(j)
i

as well asd(j)i as monotonically increasing, all physical constraints arefulfilled.

By analyzing the reduced dissipation inequality (43), different choices for the in-
ternal variablesκ(j)

i can be motivated. The two probably most obvious choices are

d
(j)
i = d

(j)
i (κ

(j)
i ), κ

(j)
i = Ψi (45)

and

d
(j)
i = d

(j)
i (κ

(j)
i ), κ

(j)
i =

n∏

k=1,k 6=j

(1− d
(k)
i ) Ψi. (46)

Clearly, the constraintṡκ(j)
i ≥ 0 have to be enforced additionally. In case of Eq. (45),

only n internal variables being the elastic energies associated with the different de-
formation modes are required, while Eq. (46) seems to resultin twice as many
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variables. However, a careful analysis of Eq. (46) reveals that also in that case, the
different failure modes are uncoupled, i.e., by inserting some of the equations into
others one can show thatκ(j)

i = κ
(j)
i (Ψi). Therefore, the choices (45) and (46) are

essentially identical.

Eq. (46) would imply that the failure modes are uncoupled. However, experimental
observations do not confirm such a response in general. A typical example is given
by a crack, where mode-I crack opening leads to a reduction ofthe shear stiffness
as well. For taking such a coupling into account and inspiredby Eq. (45),n internal
variables of the type

κi(tn+1) = max{κi(tn); Ψi(tn+1)}, κi(t = 0) = κi(0) (47)

are chosen. Here,tn+1 > tn denote two pseudo time steps. According to Eq. (47),
the irreversibility constraintṡκi ≥ 0 have already been accounted for. In contrast to
Eq. (45), the interactions between different failure modesare included by a damage
evolution of the type

d
(j)
i = d

(j)
i (κj). (48)

It should be noticed that the indices in Eq. (48) are flipped compared to Eq. (45).
The features of the resulting class of damage models are explained next by consid-
ering two prototype models.

5.2 Examples

5.2.1 Isotropic models

The first prototype model is the well known isotropic damage model, cf. [21–23].
It is based on a Helmholtz energy of the type

Ψ = (1− d) Ψe(JuK) (49)

where the elastic partΨe depends only on the norm of the displacement disconti-
nuity, cf. Subsection 4.1. Often the simplest choice being possible

Ψe =
1

2
c || JuK ||2 (50)

is made. Based on Eq. (49) the thermodynamical driving forceconjugate tod is
chosen as the elastic stored energy, i.e.,

d = d(κ), κ(tn+1) = max{κ(tn); Ψe(tn+1)}, κ(t0) = κ0. (51)
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5.2.2 Mixed-mode models based on a normal-shear decomposition of the dis-
placement discontinuity

Next, a more realistic model based on a decomposition of the failure mode into
a normal separation and a shear deformation is shown. Referring to the general
framework elaborated in Subsection 5.1, it corresponds ton = 2. While the first
part of the Helmholtz energyΨn is related to mode-I failure,Ψs is associated with
a mode-II and mode-III deformation. Accordingly, a Helmholtz energy of the type

Ψ = (1− d(n)n ) (1− d(s)n ) Ψn + (1− d(n)s ) (1− d(s)s ) Ψs (52)

is considered and the elastic energiesΨn andΨs have the form

Ψn = Ψn(JuK · n̄), Ψs = Ψs(|| JuKs ||). (53)

Evidently, they fulfill automatically the conditions imposed by the principle of ma-
terial frame indifference, cf. Subsection 4.3. For the examples presented in Sec-
tions 6 and 7, the quadratic energies

Ψn(JuK · n̄) = 1

2
cn (JuK · n̄)2 , Ψs = Ψs(|| JuKs ||) =

1

2
cs || JuKs ||2 (54)

are adopted. The model is completed by suitable evolution equations. In line with
the previous subsection, they are taken as

d
(j)
i = d

(j)
i (κj), κj(tn+1) = max{κj(tn); Ψj(tn+1)}, κj(t0) = κj0. (55)

It bears emphasis that this model fulfills all physically relevant properties and ad-
ditionally those recently postulated in [44]. The probablymost important two sim-
ilarities are listed below:

• Complete failure occurs, if one of the critical separations(energies) is reached:
Let κcrit

j denote the critical stored energy of modej. At this stage, a stress-free

macroscopic cracks forms. By designing the damage functions d
(j)
i such that

d
(j)
i (κj) → 1 for κj → κcrit

j , the stored energy converges automatically to zero
as well. Consequently,T = 0, if κj → κcrit

j .
• Symmetry and anti-symmetry conditions of the traction vector:

Let JuK = JuKn + JuKs andT = T n + T s be the decompositions of the dis-
placement jump and the traction vector into the normal and the shear part. Since
Ψn = Ψn(JuKn), Ψs = Ψs(|| JuKs ||) andT depends linearly onJuK, it fol-
lows trivially thatT n(JuKn , JuKs) = T n(JuKn ,− JuKs) andT s(JuKn , JuKs) =
−T n(JuKn ,− JuKs).
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5.3 Damage evolution

To complete the family of damage models introduced before, suitable evolution
equations for the damage variablesd

(j)
i = d

(j)
i (κj) are required. Since these equa-

tions are, with the sole exception of the respective material parameters, identical
for all damage variables, indices are omitted in what follows, i.e., without loss of
generality,d = d(κ) will be considered. Evidently, the choice ofd = d(κ) will
influence the shape of the resulting traction-separation law and consequently, it
can affect the overall structural response, cf. [7,59]. Forthis reason, three different
modelsd = d(κ) have been implemented:

• Linear softening

d =







0 κ < κnucl

1− κnucl

κ

(
κini − κ

κini − κnucl

)

κnucl < κ < κini

1 κini < κ

(56)

• Power-law hardening/softening

d =







0 κ < κnucl

1−
(

κini − κ

κini − κnucl

)n

κnucl < κ < κini

1 κini < κ

(57)

• Softening involving a stress plateau

d =







0 κ < κnucl

1− T0

cκ
κnucl < κ < κ2

1 +
T0

cκ2

(

1− κ/κini

1− κ2/κini

)2 [
κ

κ2
+ 2

1− κ/κini

1− κ2/κini
− 4

]

κ2 < κ < κini

1 κini < κ

(58)

Here,κnucl andκini are the thresholds of the internal variableκ associated with
crack nucleation and initiation of a macrocrack, respectively. Furthermore,n is a
material parameter. TheC1-continuous damage evolution (58) has been designed
such that a constant cohesive traction of magnitudeT0 is obtained within the in-
terval [κnucl = T0/c; κ2 = k2κini] (e.g. with k2 = 0.5). The different damage
evolutions (56)–(58), together with the equivalent stress-displacement responses,
are summarized in Fig. 4.

Remark 3 In contrast to the previous section and in line with most cohesive mod-
els, the equivalent displacement discontinuity implied bythe elastic energies is cho-
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stress plateau, cf. Eq. (58)

power law, cf. Eq. (57)

linear law, cf. Eq. (56)
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/
T
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0

Fig. 4. Left: various damage evolution laws defined in Eqs. (56)-(58); right: resulting trac-
tion-separation laws (material parameters:κnucl = 0.1, κini, n = 3, κ2 = 0.5 κini; κ is
chosen as the maximum displacement discontinuity, cf. Remark 3)

sen as the internal variable. For instance instead of the energyΨ = 1/2 c || JuK ||2,
|| JuK || is considered directly. However, since

√
Ψ =

√

2/c || JuK ||, both choices
are essentially equivalent.

5.4 The variational structure of damage models

Within the previous subsections, a family of cohesive models applicable to the anal-
ysis of a broad range of different materials, including those showing a pronounced
anisotropic response, has been elaborated. In sharp contrast to other interface mod-
els based on a geometrically exact description, the proposed constitutive frame-
work is thermodynamically consistent, i.e., the second lawof thermodynamics is
fulfilled.

Following [30], a canonical ordering of thermodynamicallyconsistent models is
provided by the principle of maximum dissipation. In many cases, this principle is
equivalent to minimizing the stress power, cf. [33,34]. This alternative formulation
can be conveniently discretized by a suitable time integration yielding effective so-
calledvariational constitutive updatesas advocated by Ortiz and co-workers [35–
37], see also [38–42]. Within such updates all unknown statevariables, together
with the total deformation, follow jointly and conveniently from minimizing the
integrated stress power. The resulting mathematical and physical advantages are
manifold compared to standard conventional approaches, cf. [34].

In the present subsection, the proposed class of cohesive material models will be
reformulated within the aforementioned variational framework, i.e., the advocated
class of constitutive laws can be characterized by the optimization problem

inf E with E = Ψ̇ +D. (59)
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Here,E is the stress power which can be decomposed into the rate of the Helmholtz
energyΨ and the dissipationD. It bears emphasis that although variational consti-
tutive updates were already introduced for standard stress-strain-type constitutive
models a decade ago (see [35–37]), they have not been considered for cohesive
models yet.

5.4.1 Isotropic models

For the isotropic models according to Subsection 5.2.1, theequivalence between the
already discussed constitutive framework and a variational principle of the type (59)
can be shown in a relatively straightforward manner. For that purpose, the dissipa-
tion

D = Ψe ∂d

∂κ
κ̇ = κ

∂d

∂κ
κ̇ ≥ 0 (60)

is inserted into the stress power

E =
∂Ψ

∂ JuK
· Ju̇K − ∂Ψ

∂d

∂d

∂κ
κ̇ + κ

∂d

∂κ
κ̇ = T · Ju̇K − (Ψe − κ)

∂d

∂κ
κ̇. (61)

It is important to note that Eq. (60) is fulfilled for loading (Ψ = κ) as well as for
unloading (̇κ = 0). Hence, the second term in Eq. (61) vanishes always and thus,

E = T · Ju̇K (62)

is indeed the stress power. Furthermore and equally importantly, a minimization
of E with respect to the internal variablėκ gives the evolution equation and the
loading conditions. More explicitly,

inf
κ̇
E|Ju̇K=const ⇔ κ ≥ Ψe. (63)

As a result, minimization principle (63) leads eventually to

κ(tn+1) = max{κ(tn); Ψe(tn+1)} (64)

which is equivalent to the evolution equation (51) postulated in Subsection 5.2.1.

Having minimizedE = E(Ju̇K , κ̇) with respect to the internal variablesκ̇ gives rise
to the introduction of the reduced stress power

Ẽ(Ju̇K) = inf
κ̇
ε(Ju̇K , κ̇). (65)
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Evidently,Ẽ acts as a hyperelastic stored energy potential defining the traction vec-
tor, i.e.,T = ∂Ju̇KẼ .

5.4.2 Mixed-mode models based on a normal-shear decomposition of the dis-
placement discontinuity

For showing the variational structure of the mixed-mode model as discussed in Sub-
section 5.2.2, a staggered method is used, i.e., stability of the stress powerE with
respect to one active internal variable is analyzed first. Without loss of generality,
an active normal mode is considered here. A straightforwardcomputation yields
the dissipation

D =

[
(

1− d(s)n

)

κn
∂d(n)n

∂κn
+
(

1− d(s)s

)

Ψs
∂d(n)s

∂κn

]

κ̇n ≥ 0 (66)

and thus, the respective stress power reads

E = Ψ̇
∣
∣
∣
κ̇n=0

+
(

1− d(s)n

) ∂d(n)n

∂κn
(κn −Ψn) κ̇n ≥ 0. (67)

Accordingly and in line with the isotropic damage model investigated before, the
evolution of the internal variableκn follows again from the variational principle

inf
κ̇n

E
∣
∣
∣
∣
Ju̇K=const, ˙̄F=const

⇔ κn ≥ Ψn. (68)

Consequently, the internal variableκn at timetn+1 as predicted by the minimization
principle results in

κn(tn+1) = max{κn(tn); Ψn(tn+1)} (69)

which is identical to the model presented in Subsection 5.2.2. Evidently, the deriva-
tion (66)–(69) can also be applied to the shear mode.

Having considered the case of one active deformation mode, attention is now drawn
to the coupled case. For checking whether the other failure mode is also active,
stability of the stress power which has already been minimized with respect to the
first mode (see Eq. (68)) is analyzed concerning the remanding mode. Considering
κn = Ψn (active normal failure), together witḣκs = Ψ̇s within the dissipation,
yields

E = Ψ̇
∣
∣
∣
κ̇n=0

+
(

1− d(s)s

) ∂d(n)s

∂κn
(κs −Ψs) κ̇n +

(

1− d(n)s

) ∂d(s)s

∂κs
(κs −Ψs) κ̇s ≥ 0.(70)
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Accordingly, energy stability with respect toκ̇s requires thus

κs ≥ Ψs. (71)

By comparing Ineq. (71) to Ineq. (68)2 it is evident that activity of a failure mode
can be checked by ignoring the other completely. This is a direct consequence of the
uncoupling ofκ̇n andκ̇s within the stress power. For this reason, a straightforward
simultaneous minimization ofE in case of both failure modes being active leads
again to

κn ≥ Ψn, and κs ≥ Ψs. (72)

Clearly, this uncoupling is numerically very appealing, since it reduces the com-
plexity of the optimization problem.

Independently of which failure mode is active, a minimization of the stress power
with respect to the internal variablesκn andκs defines a reduced stress power

Ẽ(Ju̇K , ˙̄F ) = inf
κ̇n,κ̇s

E(Ju̇K , ˙̄F , κ̇n, κ̇s) (73)

which acts like a hypererlastic potential defining the stresses with the interface, i.e.,

T = ∂Ju̇KẼ , P+ = α ∂ ˙̄F
Ẽ , P− = (1− α) ∂ ˙̄F

Ẽ (74)

Remark 4 The model discussed in this paragraph represents a special case (two
failure modes) of the more general class of anisotropic interface laws as introduced
in Subsection 5.1. Since this more general class leads also to an uncoupling of
the rates of the internal variablesκi within the stress power, this class can also
be reformulated within a variationally consistent format.Since this would require
the application of the same technique as employed within thepresent paragraph
(successively), further details are omitted here.

5.5 Implementational aspects

A standard or conventional implementation of the models described in Subsec-
tion 5.1 is straightforward. For that purpose and in line with standard damage the-
ory formulated in strain space (strain-stress-type models), the internal variablesκi

at (pseudo) timetn+1 can be directly computed in closed form as

κi(tn+1) = max {κi(tn); Ψi(tn+1)} . (75)
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Subsequently, the stress vectorT and the stress tensorsP± are determined by
Eqs. (42).

Alternatively, the variational principle discussed within the previous subsection can
be employed. For that purpose, the continuous problem (59) is transformed into
a discrete counterpart by considering the finite time interval [tn; tn+1], i.e., prob-
lem (59) is rewritten as

inf I∂sΩinc , I∂sΩinc :=

tn+1∫

tn

E dt = Ψ(tn+1)−Ψ(tn) +

tn+1∫

tn

D dt. (76)

For instance, in case of the isotropic model presented in Subsection 5.4.1,I∂sΩinc can
be computed analytically yielding

I∂sΩinc = Ψ(tn+1)−Ψ(tn) + κ d|tn+1

tn
−

κn+1∫

κn

d dκ. (77)

Thus, stability of this energy with respect to the unknown internal variableκ at time
tn+1 requires

∂I∂sΩinc

∂κn+1
=−Ψe(tn+1)

∂dn+1

∂κn+1
+ dn+1 + κn+1

∂dn+1

∂κn+1
− dn+1

=− (Ψe(tn+1)− κn+1)
∂dn+1

∂κn+1

≥ 0.
(78)

Accordingly, the minimization principleinf I∂sΩinc includes the evolution equation

κn+1 ≥ Ψe(tn+1) (79)

consistently.

The case of a single internal variableκ is very appealing, since the integral (77) can
be computed analytically. If more failure mechanisms are considered, the dissipa-
tion has to be integrated numerically, e.g., by applying a backward-Euler integra-
tion. However, such methods are nowadays standard and therefore, they will not be
presented in detail here. Clearly, if the time integration is consistent, consistency of
the resulting numerical scheme is guaranteed. As a summary,even if a numerical
approximation of the integral is used, the resulting algorithmic formulation of the
class of interface models is given by the variational principle

(κ1(tn+1), . . . , κn(tn+1)) = arg inf I∂sΩinc (JuKn+1 , F̄ n+1, κ1(tn+1), . . . , κn(tn+1))
∣
∣
∣
ϕ=const

.(80)

28



Independently of the number of internal variables, the variational constitutive up-
dates give therefore rise to the reduced functional

Ĩ∂sΩinc = inf
{κi}

I∂sΩinc . (81)

Assuming an analogous variational structure also for the bulk’s material model,
the functionalĨΩinc = ĨΩinc(ϕ) is introduced. With these notations, the total energy
(work) of the considered structure is given by

Itotal = Itotal(ϕ) =
∫

Ω

ĨΩinc dV − Iext +
∫

∂sΩ

Ĩ∂sΩinc dA (82)

where the potentialIext is associated with external forces. Accordingly and in line
with the local constitutive description, the global boundary value problem is also
characterized by a potential structure (which is incrementally defined). More im-
portantly, a minimization of this potential results in the classical equilibrium con-
ditions in weak form, i.e.,

δItotal = 0 =
∫

Ω

P : δF dV − ∂Iext
∂ϕ

· δu+
∫

∂sΩ

[

T · δ JuK + P± : δF±
]

dA, ∀δu(83)

Here, Eqs. (42), together withP := ∂F Ĩ
Ω
inc, have been inserted. As evident, the

term∂Iext/∂ϕ is a generalized force. Eq. (83) can be conveniently discretrized by
finite elements. For that purpose, the volume-type integrals are discretized in stan-
dard fashion, while the surface integrals are approximatedby shell-type elements,
i.e., similar to the approach presented in [52]. This is precisely the numerical im-
plementation which has been chosen. The linearization of Eq. (83) necessary for a
Newton-type iteration scheme can be computed in standard manner. For that pur-
pose, the stationarity condition defining the constitutiveupdate is linearized, i.e.,

d
(

inf
κi

I∂sΩinc |ϕ=const

)

= 0, ⇒ dκi = dκi(dJuK , dF±) (84)

which, in turn, is inserted into the linearization of Eq. (83). Further details are omit-
ted here and will be discussed in detail in a forthcoming paper. It bears emphasis
that due to the underlying variational structure, symmetryof the resulting stiffness
matrix is a priori guaranteed, cf. [60].
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Remark 5 By applying the divergence theorem, Eq. (83) can be rewritten as

δItotal =−
∫

Ω

DIVP · δu dV +
∫

∂Ω

T · δu dA− δIext

+
∫

∂sΩ

(

T− − T s

)

· δu dA +
∫

∂sΩ

(

−T + + T s

)

· δu dA

+
∫

∂sΩ

P± : δF± dA = 0, ∀δu.

(85)

For avoiding confusion between the stress vectors acting atΩ+, Ω− and that within
the discontinuity surface, the definitionT s := ∂JuKĨ

∂sΩ
inc has been introduced here.

According to Eq. (85), the corresponding Euler equations include, among others,
the strong from of traction continuity (equilibrium), i.e., T s = T + = T−. With this
equilibrium condition, Eq. (85) can be recast into (see Eq. (82))

δ Itotal|δJuK=0
=

∫

Ω

δĨΩinc dV − δIext

+
∫

∂sΩ

δ Ĩ∂sΩinc

∣
∣
∣
JuK=const,F+=const

dA

+
∫

∂sΩ

δ Ĩ∂sΩinc

∣
∣
∣
JuK=const,F−=const

dA = 0 ∀δu.

(86)

Consequently, the reduced stationarity problem is formally identical to that of a
continuum with two external surface potentials. As a result, the remaining Euler
equations are formally identical to those reported given for external boundary po-
tentials, cf. [29].

6 Analysis of the work of separation

In this section, the mechanical response as predicted by thenovel class of co-
hesive models is carefully analyzed. For that purpose, the prototype discussed in
Subsection 5.2.2 is considered. Accordingly, the model is based on a normal-shear-
decomposition of the failure mode. For the sake of comparison, the results obtained
from the models proposed in [44] and [61] are also discussed.Within all compu-
tations, the fracture energies and the ultimate stresses assummarized in Tab. 1
are used. Furthermore, a linear softening evolution for thepure failure modes (see
Eq. (56)) and a power-law softening for the mixed-mode interaction (see Eq. (57))
are considered. For the sake of completeness, the material parameters of the models
are given in the appendix (see Tabs. A.1-A.3).

For comparing the different models and in line with [44], thework of separation in
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mode-I fracture energy: 200 J/m2

mode-II/III fracture energy: 100 J/m2

ultimate stress for mode-I: 3 MPa

ultimate stress for mode-II/III: 12 MPa

Table 1
Fracture energies and ultimate stresses used within the numerical analyses

normal directionWn, in tangential directionWt and the resulting total workWtot

are computed according to

Wn =

δn
ini∫

0

Tn dJuKn (87)

Wt=

δt
ini∫

0

Tt dJuKt

Wtot =Wn +Wt.

It bears emphasis that the mechanical problems analyzed in this section and orig-
inally proposed in [44] are based on a spatially constant displacement jump, i.e.,
both sides of the crack remain parallel to one another duringdeformation. Conse-
quently, the normal vectorn remains constant as well and as a result, the respective
energetically conjugate additional stressesP± vanish.

6.1 Proportional loading

For analyzing proportional loading, the displacement jumpis linearly varied. More
specifically and focusing on a two-dimensional setting, a displacement jump of the
type

JuKn = κini sin(ϑ)t/tmax (88)
JuKt= κini cos(ϑ)t/tmax

is considered. Heret, denotes the current time,tmax ≥ t is the final time,ϑ denotes
an angle allowing to investigate different failure modes and κini is the amplitude of
the displacement discontinuity at which total material failure occurs.

The work of separation as computed by means of the different models is shown
in Fig. 5. According to this figure, all models lead to physically sound results for
the limiting cases mode-II (ϑ = 0◦) and mode-I (ϑ = 90◦), i.e., the computed
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Fig. 5. Work of separation as computed by means of different cohesive zone models for a
single element under proportional loading (see Eq. (88)).

works of separation equal the respective fracture energies, cf. Tab. 1. Furthermore,
the transition between such limiting cases is smooth. Additionally, in [44] it was
stated that the total workWtot should be monotonous for a varying failure mode.
As can be seen in Fig. 5, this is fulfilled for the model advocated in [44] as well
as for the novel constitutive law as elaborated in the present paper. By way of
contrast, the model discussed in [61] does not comply with the aforementioned
postulate. However, it should be noted that this postulate is not a physical principle.
Furthermore, it can also be fulfilled by the damage law in [61]by using a different
set of material parameters.

6.2 Non-proportional loading

Next and in line with [44], a non-proportional separation path is investigated, i.e.,
the interface is first loaded in normal direction untilJuKn = JuK1n, and subse-
quently, the tangential separation is increased up to totalfailure. The predicted
works of separation are summarized in Fig. 6. As in the case ofmonotonic load-
ing, the limiting cases (mode-I and mode-II failure) are consistently captured by all
models and the transition in between is smooth and monotonous.

In summary, the mechanical response as predicted by the novel model is in good
agreement with that corresponding to the recently published cohesive law [44].
However, it bears emphasis that only the new model is thermodynamically consis-
tent – even in case of large deformation.
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Fig. 6. Work of separation as computed by means different cohesive zone models for a
single element under non-proportional loading.

7 Numerical example: Double cantilever beam

Finally, the novel interface model is analyzed by means of the more complex
boundary value problems shown in Fig. 7. The same precrackedspecimens have

F

c L

2L

a0
h

F

a0
h

Fig. 7. Test specimens for numerical validation of the proposed model; a) double cantilever
beam (DCB) specimen for pure mode-I failure; b) mixed-mode bending (MMB) for mixed–
mode failure.

already been studied earlier using other cohesive zone models, cf. [62]. While the
geometry is identical within both mechanical problems, theboundary conditions
are changed such that the resulting failure is of mode-I within the test shown on the
left hand side in Fig. 7 (the so-calleddouble cantilever beam(DCB)) and of mixed-
mode for the problem depicted on the right hand side in Fig. 7 (the so-calledmixed-
mode bending(MMB) test). The latter was also investigated in [44]. However, the
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respective parameters are different. Within all computations the mixed-mode model
as described in Subsection 5.2.2 has been employed. Again, alinear softening evo-
lution for the pure failure modes (see Eq. (56)) and a power-law softening for the
mixed-mode interaction (see Eq. (57)) are considered.

First, the influence of various damage evolution laws on the resulting structural
response is investigated. For that purpose the DCB test, together with the evolution
equations discussed in Subsection (5.3), is considered (see Fig. 8 (left)). The mode-
I ultimate strength of the material and the respective fracture energy have been
taken from [62]:T0,n = 5.7 MPa andΓ0,n = Wn(JuKt = 0) = 0.28 kJ/m2. With
these values, the linear softening evolution is uniquely defined. Since this is a pure
mode-I problem, the remaining softening evolutions are irrelevant. The results of
the computations are summarized in Fig. 8 (right). Accordingly, the effect of the

∆a

F

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25
cmod (mm)

F
 (

N
)

0

5

10

15

20

25

 ∆
a 

(m
m

)

separation (mm)

linear law, cf. Eq. (58)

power law, cf. Eq. (59)

stress plateau, cf. Eq. (60)

0

1

2

3

4

5

6

0 0.05 0.10

tr
ac

tio
n 

(M
P

a)

Fig. 8. Results of the DCB simulation (see Fig. 7 (left)) withthree different damage evolu-
tion laws. Left: equivalent traction-separation laws corresponding to the different damage
evolutions; Right: force (F ) and crack propagation (∆a) depending on the crack mouth
opening displacement (cmod).

damage evolution is only minor for the analyzed problem.

Next, the effect of the mixed-mode interaction is carefullyanalyzed by consider-
ing the mixed-mode bending beam (MMB). In addition to the mechanical response
under mode-I, the mode-II and mixed-mode behavior has also to be defined. The
assumed material parameters are summarized in Tab. 2. The results correspond-
ing to the different material models and material parameters in terms of force vs.
crack mouth opening displacement (CMOD) are shown in Fig. 9.According to this
figure, the ultimate strength of the material does not affectthe structural response
significantly for an isotropic model. By way of contrast, theinteraction between
the different failure modes shows a very pronounced effect.While neglecting the
interaction completely leads to an ultimate load of over 300N, a strong interaction
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Model T0,n T0,t κnucl n

Isotropic (Subsection 5.2.1), var 1 20 MPa n.a. n.a.

Isotropic (Subsection 5.2.1), var 2 10 MPa n.a. n.a.

Mixed-mode (Subsection 5.2.2), var1 20 MPa 10 MPa 0.99 0.25

Mixed-mode (Subsection 5.2.2), var2 20 MPa 10 MPa 0.25 0.25

Mixed-mode (Subsection 5.2.2), var3 20 MPa 10 MPa 0.25 3
Table 2
Different sets of material parameters used within the numerical analysis of the DCB spec-
imen (see Fig. 7 (left)). Within all sets, the fracture energies are set toΓ0,n = Γ0,t =
4 kJ/m2. The power-law softening for the mixed-mode interaction (see Eq. (57)) is defined
by κnucl, n andκini = 2 κnucl.

mode decomposition,n = 3.0

mode decomposition,n = 0.25

mode decomposition, no interaction

fully isotropic,T0 = 20 MPa

fully isotropic,T0 = 10 MPa
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Fig. 9. Results of the MMB simulation (see Fig. 7 (right)) using the isotropic model (Sub-
section 5.2.1) and the mixed-mode model (Subsection 5.2.2)for different sets of material
parameters (see Tab. 2).

(n = 3) reduces this ultimate load below 200 N. Therefore, this mechanical prob-
lem is well suited for calibrating the material parameters associated with the failure
mode interaction.

The example has been re-analyzed without considering the additional membrane-
like stressesP±, i.e., the respective model is thermodynamically inconsistent and
does not fulfill the second law of thermodynamics. The results of the respective
numerical computations are not presented here, since the difference to the original
model is very small (approximately, 2 N (1%) in the computed forces). Although
such a good agreement depends strongly on the underlying Helmholtz energy and
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cannot be guaranteed in general (see Subsection 4.4), this result raises hope that the
thermodynamical inconsistency of ad-hoc models can be comparably small.

8 Conclusions

In the present paper, a novel class of anisotropic cohesive constitutive models con-
sidering large deformation has been presented. In sharp contrast to previously pub-
lished formulations, all models belonging to the advocatedclass are thermody-
namically consistent, i.e., they were rigorously derived by applying the Coleman
& Noll procedure. The probably most interesting new finding from this procedure
is the striking analogy between cohesive models and boundary potential energies.
This analogy gave rise to the introduction of additional stress tensors which can
be interpreted as deformational surface shear. To the best knowledge of the au-
thors, those stresses which are required for thermodynamical consistency at finite
strains, have not been taken into account in existing modelsyet. Accordingly, pre-
vious anisotropic cohesive constitutive models considering large deformations are
not thermodynamically consistent, i.e., they can result innon-vanishing dissipation
even in case of elastic unloading. Fortunately, this thermodynamical inconsistency
of ad-hoc models can be comparably small for realistic mechanical systems. How-
ever, there is no guarantee for this. For instance, by analyzing a simple mode-I-
type cohesive model, it was shown that the aforementioned boundary-like addi-
tional stress tensors can result in a traction-separation law showing a non-trivial
stress-free configuration consistent with the underlying Helmholtz energy. Such a
configuration is not predicted by previous, models. Furthermore, the analogy be-
tween cohesive models and boundary potential energies led to a unique definition
of the controversially discussed fictitious intermediate configuration, i.e., traction
continuity requires that the interface geometry with respect to the deformed con-
figuration has to be taken as the average of both both sides. The novel class of co-
hesive models was finally reformulated into a variationallyconsistent framework.
More precisely, it was shown the states implied by the novel model can be inter-
preted as stable energy minimizers. This variational structure was used for deriving
a variationally consistent numerical implementation.

A Material parameters used within the numerical examples presented in
Section 6
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