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Abstract

A novel class of cohesive constitutive models suitablelferanalysis of material separation
such as that related to cracks, shear bands or delaminatioagses is presented. The pro-
posed framework is based on a geometrically exact desamijfinite deformation) and it
naturally accounts for material anisotropies. For thappse, a Helmholtz energy depend-
ing on evolving structural tensors is introduced. In shampti@st to previously published
anisotropic cohesive models with finite strain kinematiesdal on a spatial description,
all models belonging to the advocated class are thermodga#iynconsistent, i.e., they
are rigorously derived by applying the Coleman & Noll praged Although this proce-
dure seems nowadays to be standard for stress-strain-tyystitative laws, this is not the
case for cohesive models at finite strains. An interesting fireding from the Coleman &
Noll procedure is the striking analogy between cohesive etsoend boundary potential
energies. This analogy gives rise to the introduction oftaaithl stress tensors which can
be interpreted as deformational surface shear. To the bestl&dge of the authors, those
stresses which are required for thermodynamical congigtatfinite strains, have not been
taken into account in existing models yet. Furthermore,atiditional stress tensors can
result in an effective traction-separation law showing a-trivial stress-free configuration
consistent with the underlying Helmholtz energy. This agufation is not predicted by
previous models. Finally, the analogy between cohesiveafs@hd boundary potential en-
ergies leads to a unique definition of the controversialgcdssed fictitious intermediate
configuration. More precisely, traction continuity reesirthat the interface geometry with
respect to the deformed configuration has to be taken as #rager of both sides. It will
be shown that the novel class of interface models does ngtfoliill the second law of
thermodynamics, but it also shows an even stronger vamatitructure, i.e., the admissi-
ble states implied by the novel model can be interpretedadsesenergy minimizers. This
variational structure is used for deriving a variationalynsistent numerical implementa-
tion.
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1 Introduction

Since the early work by Barenblatt [1] on quasi-brittle mitls (see also [2]) and
that by Dugdale [3] on ductile metalsphesive interface modelspresent one of
the most powerful and versatile tools available for the ysialof material failure.
Within such models, cohesive tractions (stress vectongai a crack), usually
given in terms of the crack width (displacement discontiyjyiresist the separa-
tion of the bulk material across the crack. Accordinglyytlage based on stress-
displacement laws (instead of a classical stress-stedationship). This is why
they are often referred to @saction-separation lawsOne of the most important
advantages of such discrete representations of mateitiaiefas that the width of
the respective failure zone is approximated as zero (wi#peet to the undeformed
configuration) and thus, the length scale associated witknmaafailure is a priori
infinitely smaller than that of the considered structure.aAgesult, cohesive in-
terface models are intrinsically multiscale approachédq4¢ Another important
advantage of interface models when combined with continapproaches is their
naturally induced size effect, cf. [5] (see also [6]). For arendetailed analysis of
the physical properties related to interface models, ttex@sted reader is referred
to [4].

While the number of different cohesive interface modelsliterature is tremen-
dous (for an overview, see [7,8] and references cited thgreiterface laws specif-
ically designed for material failure at finite strains an# stlatively rare — particu-
larly for anisotropic solids. However, geometrically nioelar effects and anisotropic
mechanical responses do play an important role in many@gijns, e.g., in de-
lamination processes, cf. [9].

Roughly, geometrically exact cohesive models can be sidmthvinto two groups.
The first group of such interface models originally devebbfoe slip bands (mode-
I or mode-lll failure) is based on the so-callethterial displacement discontinujty
cf.[10,11] (see also [12-18]). Conceptually, instead aigishe displacement jump
[u] itself, its pull-backJ = F~! - [u] is employed. Usually, although not manda-
tory, itis assumed that the localized deformatidnare of purely irreversible, plas-
tic nature. In line with classical plasticity theory (ssestrain relation), they only
occur, if a stress-based criterion is fulfilled (dependin@ield function) and they
are governed by evolution equations similar to those of thstjg strains. Clearly,
by using a referential description, the requirements ireddsy the principle of
objectivity are a priori fulfilled. Furthermore, the anajotp classical continuum
plasticity theories makes it possible to apply already texgspowerful and well
established techniques such as the Coleman & Noll procedui@9,20]. For this
reason, models falling into the range of this class areivelgtwell developed and
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thermodynamically consistent, e.g., they comply with tbastraints imposed by
the second law of thermodynamics.

Although the aforementioned group of interface models Seinte very promis-
ing, it is not well suited for some applications. The firstgea is rather techni-
cal: From a materials science point of view, it is more ndttoavork with true
stresses and true displacements (instead of using a re&trdescription). The
second point is, however, more crucial: Using the mateisdldcement disconti-
nuity within constitutive laws implies that the physicasdiacement jump consists
of an additional convective term, i.d4] = F - J + F - J (Here, the super-
posed dot denotes the material time derivative.). Accgigijreven for an unload-
ing process.{ = 0), the length of the physical displacement jump may change,
i.e., =0 % |[[«]]l = 0). This effect is similar to that known from classical
finite strain plasticity theory based on an evolution equatormulated within the
intermediate configuration. Depending on the underlyinlgifa process, it can be
desired (for ductile plastic slip) or unphysical (for quasittle materials).

For quasi-brittle materials, the second group of interfacelels is more suitable. In
contrast to the aforementioned framework, it is based oaditm-separation law
described with respect to the current, i.e., deformed, gardtion. Consequently,
the introduction of the material displacement discontynis not required. Mod-
els representative of this class can be found, e.g., in £29,23,24]. Clearly, the
constraints imposed by the fundamental principles of d¢tutste modeling such
as those related to the principle of objectivity are not eatcally fulfilled and
thus, they require special attention. However, thermonyoal principles are most
frequently not carefully considered within this modelingss, but the respective
traction-separation laws are directly postulated in amaclanner, cf. [9,25,26].
Within the framework of (classical) continuum mechanicgsmodels would con-
sequently be refereed to as Cauchy-elastic. By way of cemtieermodynamically
consistent cohesive models belonging to the second grounpesface approaches
can be found in [21-23]. With the sole exception of the work][®nly isotropict
models are discussed within the cited paper. As mention¢2ij this is due to
the additional structural tensors required for descritilrgymaterial’'s anisotropy.
For instance, if a mode-lI mode-II-1ll decomposition is ciolesed, the material’'s
anisotropy can be suitably defined by the normal ventorf the respective crack.
However,n changes during deformation and thus, it also leads to a ehang
Helmholtz energy. Since no energetically conjugate végibhs been introduced in
[21,22], this term would lead either to unphysical dissipa{even in case of fully

I In the present paper, cohesive zone models are derived frdeirahoholtz energyl
depending, among other variables, on the displacement [urfyp.e., ¥ = ¥ ([u]). Inline
with a frequently applied notation in continuum mechangee([27,28]), such constitutive
models are referred to &otropicin what follows, if the scalar-valued functioh depends
on [u] through its only invarianf| [«] ||. Models not fulfilling this requirement are defined
as anisotropic.



elastic deformations), or the stiffness matrix charazteg the interface would be
unsymmetric (even in case of fully elastic deformationdgatly, both points are
not physical. A first attempt towards an anisotropic integfanodel for the second
modeling class was made in [21]. However, a more carefulysigaleveals that
the aforementioned critical points have not been consitanel thus, the resulting
model is not thermodynamically consistent.

Recently, a thermodynamically consistent framework slgt#or the analysis of a
certain class of interfaces was proposed in [29]. Focus wds/perelastic bound-
ary potentials. For describing anisotropic materialsictiral tensors were included
within the respective Helmholtz energy. By focusing on hgpesstic solids and by
applying the principle of minimum potential energy, thedvade equations and the
constitutive response were derived. According to [29],itaital stress tensors en-
ergetically conjugate to the change in the structural tensaturally occurred. In
the present paper, a similar viewpoint is adopted. Howewet,in sharp contrast to
[29], internal interfaces including an irreversible respe are analyzed.

Adopting a thermodynamically and energetically consisteewpoint, the novel
class of interface models advocated within the presentrpapeased on a cer-
tain Helmholtz energy. For a broad range of applicationy é&lv assumptions are
made. More specifically, this energy is additively deconggbisito different parts
related to the different failure modes (such as mode-I f@)luEach failure mode
depending on evolving structural tensors, in turn, is gogdiby an effective scalar-
valued damage parameter which is multiplicatively decosegonto the underlying
degradation mechanisms. Starting with this Helmholtzgyehe interface models
are derived by rigorously applying the Coleman & Noll progexl The probably
most important step within the derivation is the introdantof additional stress
tensors within the stress power. Such stresses, similaogetin [29] can be inter-
preted as stresses related to the deformational surfaee Joehe best knowledge
of the authors, those stresses which are required for thagmaonical consistency
at finite strains, have not been taken into account in exjstindels yet. Equally im-
portantly, the additional stress tensors can result in fattfe traction-separation
law showing a non-trivial stress-free configuration cotesiswith the underlying
Helmholtz energy. This configuration is not predicted bywesttional, i.e., previ-
ous, models. Furthermore, the consideration of the additistress tensors leads
to a unique definition of the controversially discussedtfmtis intermediate con-
figuration. More explicitly, traction continuity requir¢isat the interface geometry
with respect to the deformed configuration has to be takehesaverage of both
sides.

Clearly, the constraints imposed by the second law of thdgymamics are rela-
tively weak. Hence, they do not lead to unique evolution équa, but rather to
a set of admissible evolution equations. A canonical ordedf this set is given
by the principle of maximum dissipation, cf. [30]. Matermalodels obeying that
principle are also referred to asandard dissipative solidsf. [31,32]. It can be



shown that maximizing the dissipation is in many cases edgm to minimiz-
ing the stress power, cf. [33,34]. This equivalence gawetoghe introduction of
so-calledvariational constitutive updateas advocated by Ortiz and co-workers
[35—37] and further also elaborated by others, see, e 8-4[3]. Within such up-
dates all unknown state variables, together with the tatdrmination, follow jointly
and conveniently from minimizing the integrated stress @owhe mathematically
and physically elegant variational structure of those tg&laesults in significant
advantages compared to standard conventional approdaresstance, standard
optimization algorithms can be applied for solving the neetbal problem. Fur-
thermore, a minimization principle implies the existenta natural distance (semi
metric) which is the foundation for error estimation andshior adaptive finite
elements methods, cf. [43]. For the aforementioned reasbasovel class of in-
terface models is reformulated into that variationally sistent framework. Con-
sequently, the admissible states implied by the new modaelise interpreted as
stable energy minimizers. This variational structure soalsed within the numer-
ical implementation yielding a so-calle@riational constitutive update

The present paper is organized as follows: First, existirigriace models are
briefly discussed and analyzed in Section 2. Subsequemékihematics induced
by localized material failure are concisely reviewed in tiec3. The probably
most important novel contributions can be found in Sectibrasd 5. While Sec-
tion 4 is concerned with fully elastic interfaces, matedagradation is considered
in Section 5. The mechanical response of the resulting medekt analyzed in
Section 6 for a single material point. A more complex nunarégxample is stud-
ied in Section 7.

2 State of the art review — existing models

In this section, the most frequently applied modeling #asauitable for the devel-
opment of cohesive interface laws are briefly discussedy @wlse models which

are based on a spatial description will be analyzed. Appremassociated with the
material displacement jump can be found elsewhere, e.f].in

In line with the recent work [44], the existing models aressified into potential-
based formulations and non-potential-based. Howeverraodntrast to [44], large
strain effects will also be considered and special attansa@rawn to the thermo-
dynamical consistency.



2.1 Non-potential-based models

Within non-potential-based models, the traction ve@acting within the respec-
tive shear band or crack is a priori and in an ad-hoc manngyeduo the displace-
ment jump[u], cf., e.g., [9,25,26]. As a result, focusing on elastic psses and
neglecting material anisotropies for now, such models atieeoform

T = T([u])- (1)

Accordingly, they would be referred to as Cauchy-elastithimithe framework of
continuum mechanics, see [28]. As a result, symmetry of tiagigent matrix is
not a priori guaranteed and thus, such models cannot beeddrivm a potential in
general. Therefore, the resulting dissipation might be-venmishing, even in case
of elastic loading.

An additional problem associated with this modeling clasthat usually two in-
dependent models are introduced: one for loading and ani@ukliad-hoc model
for unloading, cf. [45]. This is again in sharp contrast te thermodynamically
sound procedure known from classical stress-strain-bemestitutive models. For
instance, in case of finite strain plasticity theory (seq)[46ading as well as un-
loading follow jointly and uniquely from the definition oféhsame Helmholtz en-
ergy. The same holds for damage-type constitutive lawdg4sge

In summary, even though the applicability of non-poterbased models have been
shown in many practical applications, these models aréeottodynamically con-
sistent in general. Consequently, it is desirable to imgsach models accordingly.

Remark 1 Some authors claim that due to the path-dependence, thertangg-
trix d7'/d [u] does not need to be necessarily symmetric, see [48]. Therefey
abandon the symmetry requirement completely. This stateisiehowever, only
partly correct. First, although symmetry and path-depermeare indeed related,
they are not equivalent. More explicitly, path-dependeso&iative plasticity mod-
els do lead to a symmetric tangent. Secondly and even moaztamply, interfaces
can unload elastically. At least in this case, the respeatmatrix has to be symmet-
ric.

2.2 Potential-based models

The previous discussion showed that a thermodynamicaliggaohesive models
has necessarily to be derived from a potential energy. ssthibsection, two differ-
ent classes of potential-based models are briefly discugdaite, traditional Xu &
Needleman-type approaches are addressed in the first gphagnodels based on



a stored Helmholtz energy are analyzed subsequently.

2.2.1 Models in line with that of Xu & Needleman, cf. [49,50]

Within the modeling class originally proposed by Xu & Needbn, cf. [49,50]
(see also [44] and references cited therein), the tractemtov is derived from a
potentialy. More explicitly,

T i Wit o= o[ul) @)

Again, referring to stress-strain-based constitutive eidraction-separation law (2)
would be called hyperelastic. However, such models ardlysamplied to the mod-
eling of material failure which is intrinsically a non-carsative process. Equally
importantly, the dissipation related to material failuseniot defined by this class
of material models, at least not explicitly. The third @i point is similar to one
of the non-potential-based models. Since Eq. (2), alth@ugbtential, is designed
for capturing the material response under loading, an iatdit cohesive model is
required in case of unloading. Usually, linear elastic adiag to the origin is as-
sumed. In summary, models in line with Xu & Needleman, cf,$09 do still not
solve all problems previously discussed for non-potesfteeded approaches.

2.2.2 Models based on a stored energy potential

Only relatively recently, thermodynamically consisteohesive models have been
proposed, cf. [21-23]. Analogously to standard stressrstielations, their founda-
tion is the assumption of a suitable energy potential. Inrestto Xu & Needleman-
type constitutive laws, this energy, which is the Helmhehergy, depends in addi-
tion to the displacement jump also an a set of internal véegatelated to the defor-
mation history. Starting from this Helmholtz energy, thection-separation law is
derived by applying the Coleman & Noll procedure. It bearpbasis that the re-
sulting constitutive model holds for loading as well as folaading. In this respect,
the framework is unique, i.e, one Helmholtz energy definestales (provided the
deformation and the internal variables are known). For ldgweg suitable evo-
lution equations for the internal variables, the second d@wihermodynamics is
employed. As a consequence, the constraints imposed byittoggbes of thermo-
dynamics are a priori fulfilled. For these reasons, only thass of models will be
considered in presented paper.



2.3 Finite deformation — spatial description

Finally, some complementary remarks concerning a spagistription are given
here. In the case of large deformations, additional priesiguch as that of objec-
tivity have also to be taken into account. However, the plbbmost serious point
is related to the modeling of material anisotropies (seénfate on page 3) such
as that implied by a decomposition of the traction vectar mhormal and a shear
part. As mentioned in [22], the structural tensors may exalvd consequently, they
lead to a change in the Helmholtz energy. For instance, getkia normal vecton

of a crack as the structural tensor, focusing on fully etgstocesses, together with
a stress power of the typ - [u], the dissipation reads

D=T-[i] - ¥([u],n) = (T - O ¥) - [i] — 0,7 - 12 3)

Here, ¥ is the Helmholtz energy. Hence, by postulating the standdedionT” =
IV, the dissipation does not vanish. This is the reason whyrsonlg isotropic
models being thermodynamically sound can be found in teeglitire. In the present
paper, however, anisotropic models which also fulfill theosel law of thermody-
namics are derived for the first time.

3 Kinematics of discontinuous deformation mappings

This section is concerned with a concise summary of the katesiinduced by
strong discontinuities. Furthermore, it provides the tiotes used within the present
paper. Further details on the kinematics of discontinuefisrdhation mappings can
be found elsewhere, e.g., in [8,4,51].

In what follows, a body2 is considered to be separated during deformation into the
two parts2— andQ2* by means of an internal surfadg?, i.e.,2 = Q- UQT U

(Fig. 1). Physically speaking,(? is a crack or a shear band. The orientation.6i

with respect to the undeformed configuration is locally dsdiby its normal vector
N. In line with standard notation, the normal vectors are yastd as pointing
outwards, i.e. N~ = —N*1 = N. Since the interfacé.(} is a two-dimensional
submanifold inR? (at least locally), it proves convenient to represent it yams

of curvilinear coordinates, (¢ = 1;2), i.e.,

X =X(0,), VX e€dq. (4)
With this parameterization, the tangent vectéfs = 0, X, the normal vector

N = G, x G5/||G; x G,|| as well as the contravariant baé¥ can be computed
in standard manner.



X3 X1

Fig. 1. BodyQ2 C R? separated into two parf3~ andQ™ by an interface),()

The motion of the sub-bodié¢% andQ* is described by the deformation mapping
p: 03X — x e Q). By introducing the displacement field, ¢ can be
rewritten asp = id + w with id being the identity mapping. According to Fig. 1,
the undeformed configuration is continuous, while the dispient field is discon-
tinuous. Consequently, denoting as the displacement field for- andQ2~ and H,

as the Heaviside function o£(2, u is of the type

u=u" + H, (u*—u’). (5)

With Eq. (5) and assuming sufficient regularitywafthe displacement discontinuity
[u] at ;2 can be uniquely defined as

[u] =u" —u~ VX € 9.0 (6)

As a result, a poinX belonging to the interfac&,(2 decomposes during deforma-
tion into the two non-connected points

xr =X+ u"
VX € 9.. (7)
zt =X +u + [u]

Since the deformation ife~ and that inQ* are in general uncoupled, the normal
vectorsn~ andn™ associated with that point are usually not parallel. Fo tha-
son, a fictitious intermediate configurati@betweenz~ andx™* is frequently con-
sidered (dashed surface in Fig. 1). Introducing a scalaredaveighting parameter
«, that new configuration can be defined as

z=(1-a)z +axz’, aecl0;l]. (8)

In most casesy is settoa = 1/2, i.e., the fictitious deformed interface is assumed



to be the average et~ andx™*. Based onz—, ™ andz, the local topology of
the deformed interfacé,() can be computed in line with that of the undeformed
configuration, i.e.,

9,=0,x" M =gy xg5/|lg7 x g5
gi=0s. " mn'=g] x g7/|lgT x g7|| 9)
G.=0p,x N =gxg /|lgxagl

The choice of the parameterdefining the normal vector of the intermediate con-
figuration is a controversially discussed subject in thexditure, cf. [52,21,22,9]. In
the present paper, it will be shown that the condition ofttcecccontinuity leads to

a uniquely defined parameter

4 Elastic Interfaces

This section is concerned with the modeling of interfacesashg a fully elastic
response, i.e., focus is on hyperelastic material modédiidlifig the second law
of thermodynamics. By utilizing the framework of rationaetmodynamics (see
[19,20]), all constitutive laws discussed here are rigelpderived by means of the
by now classical Coleman & Noll procedure, cf. [53]. Consatjly, the dissipation
inequality (equality in case of purely elastic deformasipn

D=w-¥=>0 (10)

decomposed into the stress poweand the material time derivative of the Helmholtz
energyV will play an important role. Though the procedure origigatitroduced

in [53] is well established in case of standard stresssstygpe constitutive laws,

it has not been considered for a general framework of coeegine models in a
spatial setting yet.

This section is organized as follows: In Subsection 4.%raguc constitutive mod-
els are briefly discussed. The extensions necessary footeopgc materials are
given in Subsection 4.2. A special subclass of those beindeilsdased on a de-
composition of the deformation into a normal component astiear part is an-
alyzed in Subsection 4.3. Finally, the mechanical respohsee novel family of
cohesive models is highlighted in Subsection 4.4.
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4.1 Isotropic models

Isotropic cohesive models are nowadays relatively welleusithod, cf. [21-23].
Expressing the Helmholtz energyin terms of quantities associated with respect
to the deformed configuratio®, does not depend on any structural tensoris, ze.,
is allowed to depend only on the junjp] itself. Consequently,

U=U(u]) = @:%-[{@]}. (11)

According to Eq. (11), only one stress-like variable comijiego[u] is present. By
denoting this variable, which is the traction vector witktre interface, ag’, the
stress power is written as

=T - [u]. (12)

Hence, application of the Coleman & Noll procedure yields

ov

_ o 0w
9 [u]

STal (13)

Dle ].[[u]]:o = T=

As a result and as expected, the stress veftos the partial derivative of the
Helmholtz energy with respect to its dual variafpig.

For analyzing the mechanical response induced by a Helméodrgy of the type (11),
the restrictions imposed by the principle of material framdifference ¢ ([u]) =
U(Q - [u]), vQ € SO(3)) are a priori enforced. As shown, e.g., in [54,55], they
are equivalent to postulating

U= W(]| [ul [))- (14)

Hence,V is allowed to depend ofu:] only through its only invarian [«] ||. This
requirement is equivalent to the standard definition ofrcgmt of a scalar-valued
tensor function (see footnote on page 3). Using Eq. (14)trdwtion vector (13)
results in

ov [u]

T oLl T Tl 1

(15)

Accordingly, T is parallel to the displacement discontinufty]. Therefore, such
models are frequently interpreted as rubber bands comggtie two different sides
of an interface, cf. [22,9].

11



4.2 Anisotropic models

In the more general case, the stored energy functignalay additionally depend
on some structural tensoas. Accordingly, the respective energy reads

U =VY(u],ai,...a,). (16)

Since a spatial setting is adopted, those tensors may ewvotuae, i.e.,a; # 0.
They are related to their time-invariant material couraetpA; by a push-forward
transformation. For that purpose, the average deformgtiadient

F=(1-a)F +aF", a € [0;1] (17)

is introduced. In Eq. (17)F* are the surface deformation gradients, cf. [29], i.e.,
FT and F~ map only tangent vectors. Clearly, by using the cross priooluguch
tangent vectors, the normal vector can nevertheless bewtechgFora = 1/2, F
results in the classical average deformation gradientéhily, the choice of will
affect the resulting traction-separation law. This willdrealyzed in Subsection 4.4.
By combining Eq. (16) with Eq. (17), the Helmholtz energy Y tén be rewritten
as

U =U([u] ,F,F",A,...A,), with A, =0. (18)

The analogy between cohesive laws and boundary potengejiess can clearly be
seen from Eq. (18). More precisely, by denoting the defoionagradient charac-
terizing an external boundary @ and its normal with respect to the undeformed
configuration agV, the respective energies are often assumed to be of the type

U="U(F N), wth N=0 (19)

(see [29] for a recent overview). Hence, for constant dispteent jumpgu] and

the special choicel; = IV, the cohesive model (18) can indeed be interpreted as a
sum of two boundary potentials. However and in contrast tmblary potentials as-
sociated with external surfaces, cohesive models havédfibdartain compatibility
conditions, i.e., traction continuity. It will be shown ththe constraints imposed by
such conditions will define the parameter

Starting from Eq. (18) and assuming further that the spa#atorsa; are defined
by a push-forward of their material counterpaststhrough the deformation gradi-
ent (17), the rate of the Helmholtz energy is computed as

_ o
O]

[ + 2% . [(1-a)F +aF']. (20)

¥ —
OF
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It bears emphasis that the deformation gradidfitsand the displacement discon-
tinuity [u] are only weakly coupled{* = F~ + GRAD [u])). Hence, the stress
power consists of three terms in general. By introducing sivess tensorg*

of first Piola-Kirchhoff type being conjugate to the defotina gradientsF*, the
stress power can thus be written as

=T [u]+P :F +P" . F" (21)

Although this decomposition of the stress power is natutaeems that all ex-
isting cohesive models in the literature do not accountHerttvo additional terms
related toF'~. Evidently, if the deformation is infinitesimally small gbe terms can
be neglected. However, for finite strains they do not vanigh@nsequently, they
have to be taken into account. Physically speaking, thenespond to the bound-
ary potentials of each side*. Alternatively, the constitutive models addressed in
the present paragraph can be interpreted as gradient-tggels) since in contrast
to [u], F* are gradient terms. Independently of the interpretatioe respective
terms also appear, if only the normal vecidr of the displacement discontinuity
is taken as a structural tensor. Consequently, the aforigonex points apply to all
models based on a decomposition of the traction vector imormal component
and a shear part. Accordingly, without considering the @il terms in Eq. (21),
such models are not thermodynamically consistent and héneg can result in
non-vanishing dissipation even in case of elastic unlaadim Subsection 4.4 this
aspect is carefully analyzed by means of an illustrativergia.

Having defined the Helmholtz energy and its correspondite (20) and having
introduced the stress power (21), the constitutive ratgtere obtained from the by
now standard Coleman & Noll procedure, cf. [53], i.e., byleating the dissipation
inequality for fully reversible states, the constitutiuations

oV _ov o ov oV
ol ¥ Tor Y P o Tor @@

T

are found. Accordingly, in addition to the classical cosgive model (22), two
boundary-like laws are also implicitly defined by the Helrtthenergy (18). They
are formally identical to those reported in [29]. Howeved am contrast to bound-
ary potentials, the total stress vectBrcharacterizing cohesive models (internal
interfaces) is subjected to the condition of traction amunty. Thus, by considering
Cauchy’s equatiofl” = P - IN, the only admissible choice for the scalar-valued
parametery is a = 1/2, i.e., the fictitious mid-surface. This is an interesting re
sult, since many discussions on the choicevafan be found in the literature, cf.
[52,21,22,9].

It should be noted that besides the condition of tractiortinaity, the principle of
material frame indifference imposes some additional ¢aimds on the Helmholtz

13



energy¥, i.e., ¥ ([u] ,ay,...a,) =¥(Q-[u],Q-ay,...,Q-a,),VQ € SO(3)
has to hold. As stated in [54,55], such constraints can lextfely fulfilled by
using an irreducible integrity basis. However, since tlasig is, depending on the
numberm, quite lengthy, it is omitted here. In caserof= 1 which will be discussed
in the next subsection, some further comments on objeginiit be given.

Remark 2 In the present paper, both the deformation gradient of tHk ha well
as that at of an interface are denoted As From the authors point of view, con-
fusion is nevertheless excluded. Usualy,is the surface deformation gradient
whenever an interface is considered. Otherwise, it will tagesl explicitly.

4.3 Mixed-mode models based on a normal-shear decompositibe displace-
ment discontinuity

It has been observed in many experimnents that the failuckhamésms in mode-I
or mode-Il and mode-Ill can differ significantly, cf. [9]. the present subsection,
a cohesive zone model capturing such features is discusgethat purpose, a de-
composition of the displacement jump and the traction vento a normal compo-
nent and the remaining shear part is frequently appliedtf44] (see also [9] and
references cited therein). Such constitutive laws can hsidered as a special case
of those discussed in the previous subsection. More elplitiey correspond to

U =U([u],F,F* A;), with A, =N. (23)

Here, N is the normal vector defining locally the topology of the mie surface
0s€2. Sincen = n(F', N), application of Egs. (22) yields

P*:—aqj_:(l —a) —a‘?:—a —a)R® OV por
o OF oF on
T— and (24)
0 [u] pr_ OV _ v - ,®a_\p.F,T
ToOFT CoF N on '

Within the representation aP* as a rank-one tensor, the classical deformation
gradient has to be used (more preciselys F~7-IN). For highlighting the analogy
between this family of cohesive models and boundary paksiergies, Eqgs. (24)
and (24) are rewritten as

P =n®S8, e
L (25)
P'=n®3§,

14



with

- v
Soz—(l—a)g—~F g
85 (26)
ot T
= —a — - F
S, a&ﬁ

Accordingly, S can be interpreted as a deformational surface shear, c6R9
Furthermore and as already mentioned in the previous stitmsecontinuity of the
traction vector requires = 1/2.

Since the class of cohesive models discussed within thepresbsection is fre-
guently applied in solid mechanics, the constraints imgdse the principle of
material frame indifference are briefly summarized as weikording to [54,55],

an energy of the typ& = U ([u] , n) is material frame indifferent, if and only if it
can be expressed in terms|pfu] || and the normal component of the displacement
jump [u] - n. Hence, the Helmholtz energy has to be of the type

U= U(][ [u] ||, n). (27)

Since the norm of the shear deformatiar], can be written as

[ Tul, || = VI Tul P = ([u] - n)2, with  [u], = [u] - ([u] - ) 7(28)

every Helmholtz energy of the fortt = U ([u] - n, || [u], ||) fulfills evidently the
principle of material frame indifference (see, e.g., [32)2

4.4 lllustrative example

In this section, the influence of the stress tenddfsas well as the choice of the
parametetr defining the deformed configuration of the internal surf@geis care-
fully analyzed. For that purpose, a mode-I traction-sejgardaw characterized by
a Helmholtz energy of the type

W:%c@ﬂ~m2 (29)

is considered. Here,is a material parameter related to the stiffness of thefenxter

For analyzing the mechanical response corresponding tmii#tz energy (29),

a straight and vertically oriented interface of unit lengthchosen (see Fig. 2).
Consequently, witle; denoting the vectors of the cartesian basis, the undeformed
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a)a = 0.5, 3 = 180° b)a = 1.0, 8 = 90°

Fig. 2. Non-trivial stress-free configurations of the ifaee model (29) for two different
parametersr.

configuration is given by

X =e0, 0€l0;1] (30)

with 6 representing the curvilinear coordinate. This interfacéxed on the left
hand side, while the right hand side moves during deformafibus, the deformed
configuration is described by

x” =X, " =x + [u], z=1-a)x +az". (31)

It bears emphasis that the intermediate configurgwoenters the potential only
through the normal vectot. Thus, the length of the interface in the intermediate
configuration is irrelevant. Since the influencef and that ofx on the resulting
traction vector is only visible in case of large deformasia@nd a non-vanishing
gradient of the displacement discontinuity, a displacerfield of the type

[u] = [«]™ 6, with [u]™ = [sing;cos 3 — 1]T (32)

is adopted. In Eq. (32)[[u]](") is the displacement discontinuity at the position
0 = 1 of the interface. According to Eqgs. (32) and (31), the vailyjcoriented
interface is fixed at the left hand side, while the right haid $s rotated around
the positiond = 0 of the interface, cf. Fig. 2. Having defined the deformatién o
the interface, the tangent vecigy = d,x of the fictitious deformed configuration
can be computed and finally, the normal veatowith n - g, = 0 and||n|| = 1.
Clearly, since the interface remains straight during deédron (the deformation
depends linearly ofl), the normal vector is spatially constant, i®.~ n(6).

In what follows, the stress vector and the integrated fometor associated with
the interface model (29) as a result of the aforementionéorahation mode are
analyzed. By applying Eq. (24)the linearly varying traction vector implied by
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Eqg. (29) yields

T:a[[u]]\lfzc([[u]]-'ﬁ)'ﬁ (33)
and thus, the corresponding force is obtained as

Fr ::O/% de:O/T &= - c([u]™ - n) n (34)

N | —

Accordingly, T as well as the force vectdi'r are parallel tan.

As evident, the considered deformation does not only lead toonotonically
increasing displacement junf], but also to a varying normal vectat. The
stresses or forces related to such a variation are includtwistress tensoi®*,
cf. Eq. (24). Alternatively, they can be taken into accountéplacing the partial
derivative in Eqg. (34) by the total differential, i.e.,

1

1 1
dv ' ov  on
Fiota = O/Ttotal do := !m do —0/ lT + e m] do. (35)

It bears emphasis that usualF..,, depends onF'* as well. However, for the
special deformation analyzed hefe,] is the only independent displacement-like
variable. More preciselyF* = F~ + GRAD [u], together withF~ = const,
holds. As a result, a variation of the Helmholtz energyvith respect taF'* can
equivalently be expressed by a variation of the displacéwfisnontinuity, i.e.,

SF* = §GRAD [u] = ¢ [u] ™ ® G'. (36)

Here,G' is the first covariant vector. Clearly, sin€g is a cartesian basi§' =
G, = e, holds. By combining Eq. (36) with Eq. (24he variation of the Helmholtz
energy through the normal vectaris computed as

ov on -

(5;13\1/:%8—1:_15}7‘

(37)

« C

_ on 1
- % @l ([l 6) ol
and consequently, the total tractidfg,.,; acting within the interface are given by
a C

Tosa = 1] )+ % ([l o) (1l 5 67). (39)
=T

= Tﬁ
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aa=05n=1/2(n" +n') b)a=1.0:n=n"

Fig. 3. Integrated Helmholtz energy (29) depending on thiampaterx as function in terms
of the displacement discontinuifyu].

In Eq. (37), the identity ' = o §F* has been used. Evidentl¥,, is related to a
variation of the normal vector.

While the interpretation of" is straightforward,T';..,, can be conveniently an-
alyzed by the integrated Helmholtz energy. For two diffenearametersy, this
energy is shown in Fig. 3. According to Fig. 3b), the energy &#ocal extremum
at [['u,]](") - ey = —1 for a = 1.0. Consequently, the respective stress vegigy.,
vanishes. At first glance, a non-trivial stress-free coméian seems to be unphys-
ical. However, that state corresponds to a rotatiof2 ofof 5 = 90°. As shown in
Fig. 2b), in this case, a variation {)&]](") - e; does not influence the normal com-
ponent]u] - n and therefore, the energy should indeed be constaXt-direction.
Furthermore, a straightforward computations shows thatetiergy is symmetric
with respect to a variation q]fu]](") - ey for g = 90°. For this reason, this non-
trivial stress-free configuration is indeed consistenhulite underlying Helmholtz
energy. It bears emphasis that this physically relevantigoration is captured by
none of the existing models. Fortunately, it only appedrthe rotation between
both sides of the interface is very large and thus, it camdfeneglected in prac-
tical applications. Furthermore, it depends crucially loa tinderlying constitutive
law as well as on the parameter

5 Inelastic interfaces — Damage models

Having discussed the fully reversible case, focus is hownetastic processes. In
the present section, theses processes are assumed to batadswith stiffness
degradation of the considered interface. Hence, they willodeled by means of
damage mechanics. For plastic effects, the intereste@réaceferred to [16,17].

This section is structured as follows: First, the fundaraksmf the novel family of
damage models are given in Subsection 5.1. In Subsectiptwimprototype mod-
els falling into the range of that family are briefly summadzan isotropic as well
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as a mixed-mode fracture model. The novel constitutive rij@san is completed
by suitable damage evolutions which are summarized in $tibse5.3. Having
introduced the new framework for interface models, a vemmtly consistent re-
formulation is elaborated in Subsection 5.4. The sectiastes with some remarks
concerning the numerical implementation (Subsection 5.5)

5.1 Fundamentals

In this section, a class of damage models is presented. Badéning the range
of application, only few assumptions are made. The first ob¢his the additive
decomposition of the interface’s elastic energy into défé modes, i.e.,

xpe:i\pi([[u]],ptr). (39)

Each Helmholtz energy; possibly depending on structural tensors is associated
with one characteristic deformation mode. A typical exaariplgiven in Subsec-
tion 5.2.2, where the energy is decomposed into a shearmpderaadditional con-
tribution corresponding to the normal separation. A sindlecomposition is also
frequently applied in standard stress-strain-based itotsg¢ models, cf. [57,58].
The second assumption is that material damage can be sugtpptoximated by
means of a set of scalar-valued damage parameters. Hovsavwet, each defor-
mation typei is captured by its own damage variable, this assumptiontiveny
crucial and provides enough flexibility. Furthermore, acalalued damage param-
eters lead to an effective numerical implementation. Tha eissumption is that the
different damage mechanisms are coupled multiplicativitgordingly, the total
Helmholtz energy of the respective interface reads

U= iﬁ YU ([u] , FT F). (40)

i=1j=1

Evidently, postulating the standard properties of the ctmnmriable%(-j ) e 0; 1]
automatically guarantees that the effective damage variebounded accordingly,
i.e.,

—d™) =] - q; = d ;1] (41)

Jj=1
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This would not be the case for an additive decomposition lidapon of the Cole-
man & Noll procedure yields the stress response

P =(1- 4]
. Gy OV ® ; 1;[1 “ 8F
i=1j=1 +_ ‘J -
J P a Z (1—d;”) 5F

> I -d) wilel FLE) A 20 @)

Since the elastic energids are assumed to be non-negative dﬁ&l € [0;1], the

second law of thermodynamics is automatically fulfilleddgﬂ‘) is monotonically
increasing, i.e.,

d? > o. (44)

Clearly, physically speaking, Ineq. (44) avoids self-ireabf the material.

The class of models presented here is completed by derivioigteon equations
fulfilling dgj) > 0. For that purpose, a suitable set of internal variables tdet
introduced. Conceptually, one could u&% directly. However, by doing so, it
might be difficult to enforce the boundedneéé’ € [0;1]. Therefore, a rescal-
ing by means of internal varlableéf) [0; 00) is considered, i. ed ) is assumed
to be of the typel(] =d? (kY. Asa result by defining the internal variabled
as well asdi as monotonically increasing, all physical constraintsfalfédled.

By analyzing the reduced dissipation inequality (43),atint choices for the in-
ternal varlabless(” can be motivated. The two probably most obvious choices are

49 — d(j)(’f(j)) kY — (45)

d@(j) _ dz(j)(fiz(j)), HZ(J') _ H (1— d(k‘ (46)

Clearly, the constrainusgj ) > 0 have to be enforced additionally. In case of Eq. (45),
only n internal variables being the elastic energies associaitbdhe different de-
formation modes are required, while Eq. (46) seems to résulvice as many
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variables. However, a careful analysis of Eq. (46) revdads dlso in that case, the
different failure modes are uncoupled, i.e., by insertioge of the equations into

others one can show thaf) = /@f-j)(\lli). Therefore, the choices (45) and (46) are
essentially identical.

Eq. (46) would imply that the failure modes are uncoupledwveler, experimental
observations do not confirm such a response in general. Adlpkample is given
by a crack, where mode-I crack opening leads to a reductidineo$hear stiffness
as well. For taking such a coupling into account and insgiseBq. (45),» internal
variables of the type

Hi(thrl) = max{m(tn); \I]i<tn+1)}7 Iiz(t = O) = sz'(O) (47)

are chosen. Here, ., > t, denote two pseudo time steps. According to Eq. (47),
the irreversibility constraints; > 0 have already been accounted for. In contrast to
Eq. (45), the interactions between different failure maatesincluded by a damage
evolution of the type

d = d (k). (48)
It should be noticed that the indices in Eq. (48) are flippeahgared to Eq. (45).

The features of the resulting class of damage models araiagpl next by consid-
ering two prototype models.

5.2 Examples

5.2.1 Isotropic models

The first prototype model is the well known isotropic damagwlai, cf. [21-23].
It is based on a Helmholtz energy of the type

U = (1—d) U([u]) (49)

where the elastic pa© depends only on the norm of the displacement disconti-
nuity, cf. Subsection 4.1. Often the simplest choice beiogsble

1
XAl il (50)
is made. Based on Eq. (49) the thermodynamical driving fomgugate tal is
chosen as the elastic stored energy, i.e.,

d=d(r), ~k(tys1)=max{kr(t,); VY (t,s1)}, «(to) = Ko. (51)
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5.2.2 Mixed-mode models based on a normal-shear deconguosit the dis-
placement discontinuity

Next, a more realistic model based on a decomposition ofdheré mode into
a normal separation and a shear deformation is shown. Refda the general
framework elaborated in Subsection 5.1, it corresponds te 2. While the first
part of the Helmholtz energy,, is related to mode-I failurel, is associated with
a mode-Il and mode-Ill deformation. Accordingly, a Helmizaa@nergy of the type

U=(1-d") (1—-dP) 0, + (1—d™) (1-d¥) ¥, (52)

is considered and the elastic energlgsand ¥ have the form

U, = U ([u] - n). O, = O ()] [ul,])). (53)

Evidently, they fulfill automatically the conditions impad by the principle of ma-
terial frame indifference, cf. Subsection 4.3. For the egl@® presented in Sec-
tions 6 and 7, the quadratic energies

Wo([u] 1) = o (T, 0= W[ [ul, ) = 5 e || [ul, P (54)

are adopted. The model is completed by suitable evolutioatans. In line with
the previous subsection, they are taken as

dY = dP (k;),  Kj(tarr) = max{r;(t); O (tasn)},  wi(to) = Ko (55)

It bears emphasis that this model fulfills all physicallyexent properties and ad-
ditionally those recently postulated in [44]. The probailgst important two sim-
ilarities are listed below:

e Complete failure occurs, if one of the critical separati(@rsergies) is reached:
Let /s;?rit denote the critical stored energy of mogéAt this stage, a stress-free

macroscopic cracks forms. By designing the damage furmﬂ&ﬁ such that
dﬁj)(/@j) — 1fork; — li;frit, the stored energy converges automatically to zero
as well. Consequentlffy = 0, if x; — 5™

e Symmetry and anti-symmetry conditions of the traction eect
Let [u] = [u], + [u], andT = T, + T'; be the decompositions of the dis-
placement jump and the traction vector into the normal aedgtear part. Since
U, = U, ([u],), Ys = V(|| [u],||) andT depends linearly orju], it fol-
lows trivially thatT",([u] , [u],) = Tw([u], , —[u],) andTs([u], , [u],) =
_Tn([[u]]n T [[u]]s)
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5.3 Damage evolution

To complete the family of damage models introduced befargalsle evolution
equations for the damage variabhé@ = dl(-j)(f-aj) are required. Since these equa-
tions are, with the sole exception of the respective mdtpaeameters, identical
for all damage variables, indices are omitted in what fopie., without loss of
generality,d = d(x) will be considered. Evidently, the choice @f= d(x) will
influence the shape of the resulting traction-separatisnadad consequently, it
can affect the overall structural response, cf. [7,59].tR@ reason, three different
modelsd = d(x) have been implemented:

e Linear softening

0 K < Rnucl
Rnucl Rini — K
d— 1— nuc ( ini ) Fpuel < K < King (56)
KR Kini — Rnucl
1 Kini < K

e Power-law hardening/softening

0 K < Knucl
Kini — k& \"
d=1<1- (L) Knuel < K < Kinj (57)
Rini — Knucl
1 Kini < K

e Softening involving a stress plateau

0 K < Knuel
T
1——0 Foue < K < Ko
d= 2 [ (58)
o TO 1-— I{/liini K 1-— I{/liini
1+— —F — +2——————— — 4| Ky < K < Kip;
cko \ 1 — /‘62/ Rini Ro 1-— IiQ/ Rini
1 Rini < K

Here, ko and kyy; are the thresholds of the internal varialleassociated with
crack nucleation and initiation of a macrocrack, respetyii-urthermoren is a
material parameter. Th@'-continuous damage evolution (58) has been designed
such that a constant cohesive traction of magnitligdes obtained within the in-
terval [knue = To/c; ko = koki (€.9. withky = 0.5). The different damage
evolutions (56)—(58), together with the equivalent stdisplacement responses,
are summarized in Fig. 4.

Remark 3 In contrast to the previous section and in line with most ebfemod-
els, the equivalent displacement discontinuity impliethieyelastic energies is cho-
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Fig. 4. Left: various damage evolution laws defined in Eg8){58); right: resulting trac-
tion-separation laws (material parametetg;c; = 0.1, Kini, 7 = 3, ko = 0.5 Kini; K IS
chosen as the maximum displacement discontinuity, cf. ReBja

sen as the internal variable. For instance instead of thegn@ = 1/2 ¢ || [u] |

|| [w] || is considered directly. However, sing&l = ,/2/c || [u] ||, both choices
are essentially equivalent.

2
’

5.4 The variational structure of damage models

Within the previous subsections, a family of cohesive mgdgblicable to the anal-
ysis of a broad range of different materials, including theBowing a pronounced
anisotropic response, has been elaborated. In sharp sotat@her interface mod-
els based on a geometrically exact description, the praposastitutive frame-

work is thermodynamically consistent, i.e., the second ddwhermodynamics is

fulfilled.

Following [30], a canonical ordering of thermodynamicatlynsistent models is
provided by the principle of maximum dissipation. In mange&s, this principle is
equivalent to minimizing the stress power, cf. [33,34].dalternative formulation
can be conveniently discretized by a suitable time intégmnatielding effective so-
calledvariational constitutive updatess advocated by Ortiz and co-workers [35—
37], see also [38—42]. Within such updates all unknown statebles, together
with the total deformation, follow jointly and convenigpntirom minimizing the
integrated stress power. The resulting mathematical apdigdl advantages are
manifold compared to standard conventional approache84it

In the present subsection, the proposed class of cohesitgiatanodels will be
reformulated within the aforementioned variational fravoek, i.e., the advocated
class of constitutive laws can be characterized by the aopdithon problem

inf€  with E=U+D. (59)
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Here,£ is the stress power which can be decomposed into the rate bfaimholtz
energy¥ and the dissipatio®. It bears emphasis that although variational consti-
tutive updates were already introduced for standard stteas-type constitutive
models a decade ago (see [35-37]), they have not been cmtbifie cohesive
models yet.

5.4.1 Isotropic models

For the isotropic models according to Subsection 5.2.le¢juévalence between the
already discussed constitutive framework and a variakjoneciple of the type (59)
can be shown in a relatively straightforward manner. For pl@pose, the dissipa-
tion

D=U° "=k —Ff>0 (60)

is inserted into the stress power

v v ad'm@g:zﬂ[[u]]—(qfe—m)%
K

T R A R T

i (61)

It is important to note that Eq. (60) is fulfilled for loading (= «) as well as for
unloading & = 0). Hence, the second term in Eq. (61) vanishes always and thus

E=T-[u] (62)
is indeed the stress power. Furthermore and equally impibytaa minimization

of £ with respect to the internal variable gives the evolution equation and the
loading conditions. More explicitly,

inf£|[[u]]:mnst & g > e (63)

As a result, minimization principle (63) leads eventuadly t

K(tng1) = max{r(t,); Y(tn1)} (64)

which is equivalent to the evolution equation (51) postdah Subsection 5.2.1.

Having minimized€ = £([4] , ) with respect to the internal variablésives rise
to the introduction of the reduced stress power

E([u]) = inf e([u] , /). (65)
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Evidently,€ acts as a hyperelastic stored energy potential definingabgdn vec-
tor, i.e.,T = 8[[1-4]8.

5.4.2 Mixed-mode models based on a normal-shear deconguosit the dis-
placement discontinuity

For showing the variational structure of the mixed-mode etad discussed in Sub-
section 5.2.2, a staggered method is used, i.e., stabilityeostress powef with
respect to one active internal variable is analyzed firsth@it loss of generality,
an active normal mode is considered here. A straightforwardputation yields
the dissipation

D= l(l —d¥) &, %d—? +(1-d?) w, %dén)] fon > 0 (66)

and thus, the respective stress power reads

9
) Oky

(Kn — W) ey > 0. (67)

Accordingly and in line with the isotropic damage model shgated before, the
evolution of the internal variable, follows again from the variational principle

inf &

RI\

&S Ky > V. (68)

[«] —const, F=const

Consequently, the internal variablg at timet,,. ; as predicted by the minimization
principle results in

Kin(tng1) = max{ra(t,); Yu(tni1)} (69)

which is identical to the model presented in Subsectior?5Evidently, the deriva-
tion (66)—(69) can also be applied to the shear mode.

Having considered the case of one active deformation maateon is now drawn
to the coupled case. For checking whether the other failuwdenis also active,
stability of the stress power which has already been mirenhizith respect to the
first mode (see Eq. (68)) is analyzed concerning the remgmdode. Considering
ka = U, (active normal failure), together with, = ¥, within the dissipation,
yields

9y 248

oy
Oky )

s_\I[s ‘n 1_d(n)
(K ) K +( O

S

(ks — W) is > 0.(70)

26



Accordingly, energy stability with respect &Q requires thus

ke > U, (71)

By comparing Ineq. (71) to Ineq. (68i is evident that activity of a failure mode
can be checked by ignoring the other completely. This isectisonsequence of the
uncoupling ofk,, andr, within the stress power. For this reason, a straightforward
simultaneous minimization of in case of both failure modes being active leads
again to

ko> W, and ks> V. (72)

Clearly, this uncoupling is numerically very appealingica it reduces the com-
plexity of the optimization problem.

Independently of which failure mode is active, a minimiaatdf the stress power
with respect to the internal variables andx, defines a reduced stress power

E(Li], F) = jnf E([a], F i ) (73)

which acts like a hypererlastic potential defining the stesswvith the interface, i.e.,

T =0yé, P'=00,, P =(1-a)0;é (74)
Remark 4 The model discussed in this paragraph represents a speasa (two
failure modes) of the more general class of anisotropiafatee laws as introduced
in Subsection 5.1. Since this more general class leads alsmtuncoupling of
the rates of the internal variables; within the stress power, this class can also
be reformulated within a variationally consistent form&tnce this would require
the application of the same technique as employed withirptegent paragraph
(successively), further details are omitted here.

5.5 Implementational aspects

A standard or conventional implementation of the model<iilesd in Subsec-
tion 5.1 is straightforward. For that purpose and in lindwgtandard damage the-
ory formulated in strain space (strain-stress-type mogdtis internal variables;

at (pseudo) time,, . ; can be directly computed in closed form as

Ki(tny1) = max {r(tn); Wiltny1)} - (75)
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Subsequently, the stress vecfBrand the stress tensoR* are determined by
Egs. (42).

Alternatively, the variational principle discussed witline previous subsection can
be employed. For that purpose, the continuous problem &g&pnsformed into
a discrete counterpart by considering the finite time irgely;; ¢,,.1], i.e., prob-
lem (59) is rewritten as

thfl tn+1
inf 129 [ / Edt = U(t,) — U(t,) + / D dt. (76)
tn tn

For instance, in case of the isotropic model presented is&iion 5.4.172% can
be computed analytically yielding

Rn41

I = W(tyyy) — B(t,) + 5 d] — / d dx. (77)

mc

Thus, stability of this energy with respect to the unknoweiinal variable: at time
.1 requires

OIS . od, od,,
==Vt 1) + + dnt1 + Kt = dnt1
ki Oknt1 ; OFpt1 (78)
—— (U (tys1) — Fin > .
(U(tnt1) — Kntr) Bkims =
Accordingly, the minimization principleaf 7% includes the evolution equation

s Ay (79)

consistently.

The case of a single internal varialiés very appealing, since the integral (77) can
be computed analytically. If more failure mechanisms amsatered, the dissipa-
tion has to be integrated numerically, e.g., by applying ekbvard-Euler integra-
tion. However, such methods are nowadays standard anddtesriney will not be
presented in detail here. Clearly, if the time integrat®odnsistent, consistency of
the resulting numerical scheme is guaranteed. As a summaay, if a numerical
approximation of the integral is used, the resulting akponic formulation of the
class of interface models is given by the variational ppteci

(K1(tns1), -« nltnrr)) = arg inf I ([ul,, 1 Fogrs 61 (tng)s - - - K/n<tn+1>>‘
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Independently of the number of internal variables, theatamnal constitutive up-
dates give therefore rise to the reduced functional

inc inc

I8 — {mf} 1%, (81)

Assuming an analogous variational structure also for tHe'dbmaterial model,
the functionall{’, = I () is introduced. With these notations, the total energy

inc inc

(work) of the considered structure is given by

[total == [total(cp) == /jl?lc dv — [ext + / il?lscg dA (82)
Q 0sQ

where the potential.; is associated with external forces. Accordingly and in line
with the local constitutive description, the global bourydealue problem is also
characterized by a potential structure (which is incremigntiefined). More im-
portantly, a minimization of this potential results in tHagssical equilibrium con-
ditions in weak form, i.e.,

6]ext
e

STt = 0 = / P:oFdV — 2% sy / [T 5[u] + P* : 6F*] dA, Vou(83)
Q

0sQ2

Here, Egs. (42), together witP := 0xI}., have been inserted. As evident, the
termdl... /Oy is a generalized force. Eq. (83) can be conveniently diszest by
finite elements. For that purpose, the volume-type integaed discretized in stan-
dard fashion, while the surface integrals are approximbyeshell-type elements,
i.e., similar to the approach presented in [52]. This is igedg the numerical im-
plementation which has been chosen. The linearization of&) necessary for a
Newton-type iteration scheme can be computed in standanth@naFor that pur-

pose, the stationarity condition defining the constitutipeate is linearized, i.e.,

d (i’?_f 759

mc

<F:COHSt) =0, = dk; =dr;(d]u], dFi) (84)

which, in turn, is inserted into the linearization of Eq. J83urther details are omit-
ted here and will be discussed in detail in a forthcoming pdpéears emphasis
that due to the underlying variational structure, symmefrghe resulting stiffness
matrix is a priori guaranteed, cf. [60].
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Remark 5 By applying the divergence theorem, Eq. (83) can be rewrate

8 Lot :—/ DIVP - §u dV + / T 5udA— L,
Q o0

+ [ (17 -T.) suda+ [ (T +T.) buda (85)
8:02 8:Q2

+/ P* . §F* dA =0, You.
052

For avoiding confusion between the stress vectors actifigfat)— and that within
the discontinuity surface, the definiti@n, := 8[uﬂf§f§ has been introduced here.
According to Eq. (85), the corresponding Euler equatiordude, among others,
the strong from of traction continuity (equilibrium), i.&, = T+ = T~. With this

equilibrium condition, Eqg. (85) can be recast into (see BR){
5 -[total|5[[u]]:0 = /5f1?1c dV — 5Iext
Q
+ [0 Rof
Q

Os 4
+ [aine
052

[u]=const, F+=const dA (86)

dA = 0 Yéu.

[u]=const,F~=const

Consequently, the reduced stationarity problem is forynalentical to that of a
continuum with two external surface potentials. As a reshl remaining Euler
equations are formally identical to those reported giveneixternal boundary po-
tentials, cf. [29].

6 Analysis of the work of separation

In this section, the mechanical response as predicted bydkiel class of co-
hesive models is carefully analyzed. For that purpose, tb®type discussed in
Subsection 5.2.2 is considered. Accordingly, the modehgeld on a normal-shear-
decomposition of the failure mode. For the sake of comparitee results obtained
from the models proposed in [44] and [61] are also discusaétthin all compu-
tations, the fracture energies and the ultimate stressesiramarized in Tab. 1
are used. Furthermore, a linear softening evolution foiptine failure modes (see
Eg. (56)) and a power-law softening for the mixed-mode ext8on (see Eq. (57))
are considered. For the sake of completeness, the mataraahpters of the models
are given in the appendix (see Tabs. A.1-A.3).

For comparing the different models and in line with [44], werk of separation in
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mode-I fracture energy: 200 J/n?
mode-II/Ill fracture energy: 100 J/n?
ultimate stress for mode-I: 3 MPa

ultimate stress for mode-Il/Ill: 12 MPa

Table 1
Fracture energies and ultimate stresses used within theneahanalyses

normal directionl¥,,, in tangential directio?; and the resulting total work;
are computed according to

n
ini

W, = / 7, d[u], 87)

0

t
ini

Wt:/Tt d[u],
0
Wiot = Wy + Wi

It bears emphasis that the mechanical problems analyzdusiséction and orig-
inally proposed in [44] are based on a spatially constarglacement jump, i.e.,
both sides of the crack remain parallel to one another dud@igrmation. Conse-
guently, the normal vectat remains constant as well and as a result, the respective
energetically conjugate additional stresg&s vanish.

6.1 Proportional loading

For analyzing proportional loading, the displacement jusimearly varied. More
specifically and focusing on a two-dimensional setting spldicement jump of the

type

[u]l, = Kini sin(9)t/tme (88)
[u], = Kini cos(D)t/tmas
is considered. Herg denotes the current timg,.. > ¢ is the final timey) denotes

an angle allowing to investigate different failure moded ajy; is the amplitude of
the displacement discontinuity at which total materidufiaa occurs.

The work of separation as computed by means of the differemets is shown
in Fig. 5. According to this figure, all models lead to phy#iicaound results for
the limiting cases mode-Ik)( = 0°) and mode-1 ¢ = 90°), i.e., the computed

31



0.280& .- AI _____________ A I I I I T
SRR T A A
- Q.. A
0.15 } model [61],W,, —F—S 8. ]
model [61],W, —&— @ A A,
£ [model [61]Wig —A— RN
S model [44],W,, ---&3-- Q. -
= 01} o AT
Vg 7T
R model [44],W, --O
model [44],Wyop ---4A--- E
new model W, -3 o 3
0.05F new modelW; O g X 1
new modelWio; A a7
O e e = =
.--""-E-.-- P - . \‘
0 = —t 1 1 1 \)
0 15 30 45 60 75 90
angled (°)

Fig. 5. Work of separation as computed by means of differehesive zone models for a
single element under proportional loading (see Eg. (88)).

works of separation equal the respective fracture energiesab. 1. Furthermore,
the transition between such limiting cases is smooth. Aalttdly, in [44] it was
stated that the total worl’;,; should be monotonous for a varying failure mode.
As can be seen in Fig. 5, this is fulfilled for the model advedan [44] as well
as for the novel constitutive law as elaborated in the prtepaper. By way of
contrast, the model discussed in [61] does not comply withaforementioned
postulate. However, it should be noted that this postutatet a physical principle.
Furthermore, it can also be fulfilled by the damage law in [@Llsing a different
set of material parameters.

6.2 Non-proportional loading

Next and in line with [44], a non-proportional separatiohpia investigated, i.e.,
the interface is first loaded in normal direction urftit], = [u]., and subse-
guently, the tangential separation is increased up to fathire. The predicted
works of separation are summarized in Fig. 6. As in the caseasfotonic load-
ing, the limiting cases (mode-I and mode-Il failure) aresistently captured by all
models and the transition in between is smooth and monosnou

In summary, the mechanical response as predicted by thé mmdel is in good
agreement with that corresponding to the recently pubdist@hesive law [44].
However, it bears emphasis that only the new model is theymadically consis-
tent — even in case of large deformation.
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Fig. 6. Work of separation as computed by means differenesiosh zone models for a
single element under non-proportional loading.

7 Numerical example: Double cantilever beam

Finally, the novel interface model is analyzed by means ef itiore complex
boundary value problems shown in Fig. 7. The same precragedmens have

TF
H]
]

7/

R
Y =

LSS

Fig. 7. Test specimens for numerical validation of the psgabmodel; a) double cantilever
beam (DCB) specimen for pure mode-I failure; b) mixed-moeleding (MMB) for mixed—
mode failure.

already been studied earlier using other cohesive zone Isyade[62]. While the
geometry is identical within both mechanical problems, boendary conditions
are changed such that the resulting failure is of mode-liwitie test shown on the
left hand side in Fig. 7 (the so-callelduble cantilever beafdCB)) and of mixed-
mode for the problem depicted on the right hand side in Fith& fo-calleanixed-
mode bendingMMB) test). The latter was also investigated in [44]. Howg\the
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respective parameters are different. Within all compatetihe mixed-mode model
as described in Subsection 5.2.2 has been employed. Adaieaa softening evo-
lution for the pure failure modes (see Eqg. (56)) and a poaerdoftening for the
mixed-mode interaction (see Eq. (57)) are considered.

First, the influence of various damage evolution laws on #wilting structural
response is investigated. For that purpose the DCB tettiegwith the evolution
equations discussed in Subsection (5.3), is considered~ge8 (left)). The mode-
| ultimate strength of the material and the respective fnacenergy have been
taken from [62]:7,,, = 5.7 MPa andl'y,, = W, ([u], = 0) = 0.28 kd/n¥. With
these values, the linear softening evolution is uniquefindd. Since this is a pure
mode-| problem, the remaining softening evolutions areleéwrant. The results of
the computations are summarized in Fig. 8 (right). Accaybjinthe effect of the

linear law, cf. Eq. (58)
6 - — — power law, cf. Eq. (59) |10 T 25
“‘?\ - - - .stress plateau, cf. Eq. (60Y | Aa
Q-
8 | F 120
s ~
S 71 * 7
= 6 S 15 E
c = T S
S . R £
o w . <
g 4 1 7 - 10
3 ,}'-
2 / 15
14
0 T T O T 7 T T T O
0 0.05 0.10 0 5 10 15 20 25

separation(mm) cmod (mm)

Fig. 8. Results of the DCB simulation (see Fig. 7 (left)) wihihee different damage evolu-
tion laws. Left: equivalent traction-separation laws esponding to the different damage
evolutions; Right: force £') and crack propagatior’Na) depending on the crack mouth
opening displacement (cmod).

damage evolution is only minor for the analyzed problem.

Next, the effect of the mixed-mode interaction is carefahalyzed by consider-
ing the mixed-mode bending beam (MMB). In addition to the hegtcal response
under mode-I, the mode-Il and mixed-mode behavior has al$® tdefined. The
assumed material parameters are summarized in Tab. 2. $Shksreorrespond-
ing to the different material models and material paranseiteterms of force vs.

crack mouth opening displacement (CMOD) are shown in Figh&ording to this

figure, the ultimate strength of the material does not affieetstructural response
significantly for an isotropic model. By way of contrast, tinéeraction between
the different failure modes shows a very pronounced efiéfttile neglecting the

interaction completely leads to an ultimate load of over BQ@ strong interaction
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Model TO,n T07t Knuel n

Isotropic (Subsection 5.2.1), var 1 20 MPa na. n.a.
Isotropic (Subsection 5.2.1), var 2 10 MPa na. n.a.
Mixed-mode (Subsection 5.2.2), var1 20 MPa 10MPa 0.99 0.25
Mixed-mode (Subsection 5.2.2), var2 20MPa 10MPa 0.25 0.25

Mixed-mode (Subsection 5.2.2), var3 20MPa 10MPa 0.25 3
Table 2
Different sets of material parameters used within the nicakanalysis of the DCB spec-
imen (see Fig. 7 (left)). Within all sets, the fracture emesgare set td'o,, = I'gy =
4 kJ/m?. The power-law softening for the mixed-mode interactioze(Eq. (57)) is defined
by Knucl, TV and’iini = 2 Knucl-

350 T T T T \’,J‘,
300 | @ i
(o
250 f /@1 .
- ezl
Z 200} = - .
) S -
2 AFOR ==
£ 150F B X N -
! @@—-‘—E:“@“
fully isotropic, 7y = 10 MPa —&3—
100 fully isotropic, 7y = 20 MPa ---{3--- ]|
mode decomposition, no interactior——
S0 ¢ mode decompositiom, = 0.25 —&— 7
mode decompositiom, = 3.0 ---O---
0 LA 1 1 1 1 1
0 5 10 15 20 25 30
cmod (mm)

Fig. 9. Results of the MMB simulation (see Fig. 7 (right))ngsthe isotropic model (Sub-
section 5.2.1) and the mixed-mode model (Subsection 5@ 2jifferent sets of material
parameters (see Tab. 2).

(n = 3) reduces this ultimate load below 200 N. Therefore, thishmaaal prob-
lem is well suited for calibrating the material parametessogiated with the failure
mode interaction.

The example has been re-analyzed without considering ttiéd@thl membrane-
like stresseP™, i.e., the respective model is thermodynamically incaesisand

does not fulfill the second law of thermodynamics. The resaoftthe respective
numerical computations are not presented here, since ffieeeice to the original
model is very small (approximately, 2 N (1%) in the computectés). Although
such a good agreement depends strongly on the underlyimghdéz energy and
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cannot be guaranteed in general (see Subsection 4.4)esuil$ raises hope that the
thermodynamical inconsistency of ad-hoc models can be acaibpy small.

8 Conclusions

In the present paper, a novel class of anisotropic cohesivstitutive models con-
sidering large deformation has been presented. In shatpasbto previously pub-
lished formulations, all models belonging to the advocatkds are thermody-
namically consistent, i.e., they were rigorously derivgdapplying the Coleman
& Noll procedure. The probably most interesting new findirmn this procedure
is the striking analogy between cohesive models and boymutzential energies.
This analogy gave rise to the introduction of additionaéssrtensors which can
be interpreted as deformational surface shear. To the Imestledge of the au-
thors, those stresses which are required for thermodym@dconsistency at finite
strains, have not been taken into account in existing maoasAccordingly, pre-
vious anisotropic cohesive constitutive models consmdelarge deformations are
not thermodynamically consistent, i.e., they can resuttin-vanishing dissipation
even in case of elastic unloading. Fortunately, this thelynamical inconsistency
of ad-hoc models can be comparably small for realistic meichhsystems. How-
ever, there is no guarantee for this. For instance, by amagya simple mode-I-
type cohesive model, it was shown that the aforementioneshdery-like addi-
tional stress tensors can result in a traction-separatienshowing a non-trivial
stress-free configuration consistent with the underlyimdntholtz energy. Such a
configuration is not predicted by previous, models. Furtiee, the analogy be-
tween cohesive models and boundary potential energie® ladihique definition
of the controversially discussed fictitious intermediadefgyuration, i.e., traction
continuity requires that the interface geometry with respe the deformed con-
figuration has to be taken as the average of both both sidesndVel class of co-
hesive models was finally reformulated into a variationatiysistent framework.
More precisely, it was shown the states implied by the novadl@hcan be inter-
preted as stable energy minimizers. This variational sireavas used for deriving
a variationally consistent numerical implementation.

A Material parameters used within the numerical examples pesented in
Section 6
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